Learn More
Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer and adaptive evolution in experimental organisms. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring about phenotypic variation and improved(More)
Dendritic cells (DCs) are strong activators of primary T cell responses. Their priming ability is acquired upon encounter with maturation stimuli. To identify the genes that are differentially expressed upon maturation induced by exposure to Gram-negative bacteria, a kinetic study of DC gene expression was done with microarrays representing 11,000 genes and(More)
To identify new molecular targets of rapamycin, an anticancer and immunosuppressive drug, we analyzed temporal changes in yeast over 6 h in response to rapamycin at the transcriptome and proteome levels and integrated the expression patterns with functional profiling. We show that the integration of transcriptomics, proteomics, and functional data sets(More)
The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and(More)
Stimulation of dendritic cells (DCs) by the egg stage of the helminth parasite Schistosoma mansoni activates a signaling pathway resulting in type I interferon (IFN) and IFN-stimulated gene (ISG) expression. Here, we demonstrate that S. mansoni eggs disjointedly activate myeloid differentiation factor 88 (MyD88)-dependent and MyD88-independent pathways in(More)
Recent studies in cancer cells and budding yeast demonstrated that aneuploidy, the state of having abnormal chromosome numbers, correlates with elevated chromosome instability (CIN), i.e. the propensity of gaining and losing chromosomes at a high frequency. Here we have investigated ploidy- and chromosome-specific determinants underlying aneuploidy-induced(More)
Candida albicans is the most important fungal pathogen of humans, causing severe infections, especially in nosocomial and immunocompromised settings. However, it is also the most prevalent fungus of the normal human microbiome, where it shares its habitat with hundreds of trillions of other microbial cells. Despite weak organic acids (WOAs) being among the(More)
Candida albicans is the leading cause of fungal infections; but it is also a member of the human microbiome, an ecosystem of thousands of microbial species potentially influencing the outcome of host-fungal interactions. Accordingly, antibacterial therapy raises the risk of candidiasis, yet the underlying mechanism is currently not fully understood. We(More)
When cells in our body change their genome and develop into cancer, we blame it on genome instability. When novel species conquer inhospitable environments, we credit it to genome evolution. From a cellular perspective, however, both processes are outcomes of the same fundamental biological properties-genome and pathway plasticity and the natural selection(More)
Rheumatoid arthritis is a chronic inflammatory disease with a high prevalence and substantial socioeconomic burden. Despite intense research efforts, its aetiology and pathogenesis remain poorly understood. To identify novel genes and/or cellular pathways involved in the pathogenesis of the disease, we utilized a well-recognized tumour necrosis(More)