Norman Neumaier

Learn More
We evaluated the molecular, anatomical and physiological properties of a soybean line transformed to improve drought tolerance with an rd29A:AtDREB1A construct. This construct expressed dehydration- responsive element binding protein DREB1A from the stress-inducible rd29A promoter. The greenhouse growth test included four randomized blocks of soybean(More)
To identify differentially expressed genes in soybean grown under different drought conditions, cDNA libraries from roots of different genotypes were constructed. Genes of contrasting genotypes of soybean were found to be differentially expressed in plants exposed to drought conditions. A total of 753 no redundant clones were identified by PCR, and these(More)
Tetsuji Oya Pesquisador do Jircas (Japan International Research Center for Agricultural Sciences) Doutorado pela University of Tokyo em Agronomy stresses abióticos, como a seca, podem reduzir significativamente os rendimentos das lavouras e restringir as latitudes e os solos onde espécies comercialmente importantes podem ser cultivadas. As implicações são(More)
A lack of pliant software tools that support small- to medium-scale DNA sequencing efforts is a major hindrance for recording and using laboratory workflow information to monitor the overall quality of data production. Here we describe VSQual, a set of Perl programs intended to provide simple and powerful tools to check several quality features of the(More)
Tolerance to drought in plants is not a simple trait, but a complex of mechanisms working in combination to avoid or to resist water deficit. Genotypes that differ in tolerance to water deficit may show qualitative and quantitative differences in gene expression when submitted to drought periods. Four cotton (Gossypium hirsutum L.) genotypes (Siokra L-23,(More)
The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress(More)
To gain insight into stress-responsive gene regulation in soybean plants, we identified consensus sequences that could categorize the transcription factors MYBJ7, BZIP50, C2H2, and NAC2 as members of the gene families myb, bzip, c2h2, and nac, respectively. We also investigated the evolutionary relationship of these transcription factors and analyzed(More)
Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study,(More)
Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation(More)
Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in(More)