Norman M. Wereley

Learn More
We have investigated the ability of humans to stabilize their heads in space and assessed the influence of mental set and the relative importance of visual and vestibular cues. Ten normal subjects and 3 patients with bilateral vestibular loss were studied. Subjects were fixed firmly to the chair of a turntable facing a screen on which was projected a target(More)
The hysteresis behavior of a linear stroke magnetorheological damper is characterized for sinusoidal displacement excitation at 2.0 Hz (nominal). First, we characterize the linearized MR damper behavior using equivalent viscous damping and complex stiffness. Four different nonlinear modeling perspectives are then discussed for purposes of system(More)
Pneumatic Artificial Muscles (PAMs) are used in robotic and prosthetic applications due to the high power to weight ratio, controllable compliance, and simple design. Contractile PAMs are typically used in traditional hard robotics in place of heavy electric motors. As the field of soft robotics grows, extensile PAMs are beginning to have increased usage.(More)
Title of dissertation: An Analytical Investigation of Flapping Wing Structures for Micro Air Vehicles Nicholas C. Rosenfeld Doctor of Philosophy, 2011 Dissertation directed by: Professor Norman M. Wereley Department of Aerospace Engineering An analytical model of flapping wing structures for bio-inspired micro air vehicles is presented in this dissertation.(More)
This paper presents the dynamic modeling of Mckibben pneumatic artificial muscles. The air flow model of a valve orifice and the air volume model of a pneumatic muscle are incorporated into the proposed dynamic model to estimate precisely the pressure variance of a pneumatic muscle when Mckibben muscles are in inflating and deflating. Coefficient parameters(More)
A systematic study of the magnetic and rheological properties of magneto-rheological (MR) fluids containing micron-size and nano-size iron particles is presented. The MR fluids were prepared with hydraulic oil as the carrier liquid and lecithin as an effective surfactant medium that promotes uniform particle dispersion. Magnetic measurements on micron-,(More)
Magnetorheological (MR) fluids can be used in a variety of smart semiactive systems. The MR damper shows an especially great potential to mitigate environmentally induced vibration and shocks. Another aspect of MR fluids is the construction of MR valve networks in conjunction with a hydraulic pump resulting in a fully active actuator. These devices are(More)
This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff during the downstroke. Inserting a variable stiffness mechanism into the leading edge spar affects its structural(More)
Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential application to prostheses and small(More)
In this work, we consider magnetic separation of iron oxide nanoparticles when a nanoparticle suspension (diluted ferrofluid) passes through a closed-loop filter composed of a packed bed of micro-beads magnetized by an externally applied magnetic field. We show that the capture of nanoparticles of a size as small as 60 nm is easily achieved at(More)