Norman F. Boyd

Learn More
PURPOSE To investigate the use of the whole-breast sound speed measurement as a marker of breast density (BD), a known risk factor for breast cancer. METHODS As part of an ongoing study of breast cancer detection, 249 patients were scanned with a clinical prototype that operates on the principles of ultrasound tomography. Typically, 40-100 sound speed(More)
Quantitative classification of mammographic parenchyma based on radiological assessment has been shown to provide one of the strongest estimates of the risk of developing breast cancer. Existing classification schemes, however, are limited by coarse category scales. In addition, subjectivity can lead to sizeable interobserver and intraobserver variations.(More)
BACKGROUND The radiographic appearance of the female breast varies from woman to woman depending on the relative amounts of fat and connective and epithelial tissues present. Variations in the mammographic density of breast tissue are referred to as the parenchymal pattern of the breast. Fat is radiologically translucent or clear (darker appearance), and(More)
The etiology of familial breast cancer is complex and involves genetic and environmental factors such as hormonal and lifestyle factors. Understanding familial aggregation is a key to understanding the causes of breast cancer and to facilitating the development of effective prevention and therapy. To address urgent research questions and to expedite the(More)
BACKGROUND Extensive mammographic density is associated with an increased risk of breast cancer and makes the detection of cancer by mammography difficult, but the influence of density on risk according to method of cancer detection is unknown. METHODS We carried out three nested case-control studies in screened populations with 1112 matched case-control(More)
Radiologically dense breast tissue (mammographic density) is strongly associated with risk of breast cancer, but the biological basis for this association is unknown. In this study we have examined the association of circulating levels of hormones and growth factors with mammographic density. A total of 382 subjects, 193 premenopausal and 189(More)
Variations in percent mammographic density (PMD) reflect variations in the amounts of collagen and number of epithelial and non-epithelial cells in the breast. Extensive PMD is associated with a markedly increased risk of invasive breast cancer. The PMD phenotype is important in the context of breast cancer prevention because extensive PMD is common in the(More)
Information derived from mammographic parenchymal patterns provides one of the strongest indicators of the risk of developing breast cancer. To address several limitations of subjective classification of mammographic parenchyma into coarse density categories, we have been investigating more quantitative, objective methods of analysing the film-screen(More)
The amount of radiologically dense breast-tissue appearing on a mammogram varies between women because of differences in the composition of breast tissue, and is referred to here as mammographic density. This review presents evidence that mammographic density is a strong risk factor for breast cancer, and that risk of breast cancer is four to five times(More)
The radiological appearance of the female breast varies among individuals because of differences in the relative amounts and X-ray attenuation characteristics of fat and epithelial and stromal tissues. Fat is radiolucent and appears dark on a mammogram, and epithelium and stroma are radiodense and appear light. We review here the evidence that these(More)