Learn More
Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and(More)
We investigated the restoration trajectories in vegetation and soil parameters of monospecific Rhizophora mucronata stands planted 6, 8, 10, 11, 12, 17, 18, and 50 years ago (restored system). We tested the hypothesis that the changes in vegetation characteristics, with progressing mangrove age, are related to the changes in soil characteristics. The(More)
Mangroves are key components of coastal ecosystems in tropical and subtropical regions worldwide. However, the patterns and mechanisms of modern distribution of mangroves are still not well understood. Historical vicariance and dispersal are two hypothetic biogeographic processes in shaping the patterns of present-day species distributions. Here we(More)
Using a space-for-time substitution approach, we investigated the effects of a typhoon on the vegetation and soil development trajectories of monospecific stands of Rhizophora mucronata mangroves of different ages (6-, 8- 10-, 11-, 12-, 17-, 18- and 50-year stands). The vegetation and soil parameters were compared to a reference system comprised of mature,(More)
Glacial vicariance is thought to influence population dynamics and speciation of many marine organisms. Mangroves, a plant group inhabiting intertidal zones, were also profoundly influenced by Pleistocene glaciations. In this study, we investigated phylogeographic patterns of a widespread mangrove species Sonneratia caseolaris and a narrowly distributed,(More)
Avicennia L. (Avicenniaceae), one of the most diverse mangrove genera, is distributed widely in tropical and subtropical intertidal zones worldwide. Five species of Avicennia in the Indo-West Pacific region have been previously described. However, their phylogenetic relationships were determined based on morphological and allozyme data. To enhance our(More)
We compared the mollusc assemblages of planted mono-specific Rhizophora mangroves of known different ages. As forest age increased, there was a shift in species composition, abundance and biomass of mollusc assemblages for all faunal types (infauna, epifauna and arboreal fauna). This shift was correlated with the changes in vegetation (increasing forest(More)
A correlation between petroleum hydrocarbon concentrations in sediments and chlorophyll-deficient mutations in mangroves may occur also in Australian mangroves. Earlier reports of such mutations in the Caribbean area were evident in viviparous propagules of the common mangrove genera, Rhizophora, borne on otherwise normal trees. These mutant propagules were(More)
  • 1