Noritaka Kawashima

Masami Akai12
Tetsuya Ogawa9
Hiroki Obata8
12Masami Akai
9Tetsuya Ogawa
8Hiroki Obata
Learn More
Abstract. The purpose of this study was to investigate the cortical activities during two types of Go/NoGo task with different movement instructions (Push-Go and Release-Go) using transcranial magnetic stimulation (TMS) and event-related potential (ERP) recordings. In the Push-Go condition, ten subjects were instructed either to push a button with their(More)
The delay of the sensory-motor feedback loop is a destabilizing factor within the neural control mechanism of quiet standing. The purposes of this study were 1) to experimentally identify the neuromusculoskeletal torque-generation process during standing posture and 2) to investigate the effect of the delay induced by this system on the control mechanism of(More)
Direct evidence supporting the contribution of upper limb motion on the generation of locomotive motor output in humans is still limited. Here, we aimed to examine the effect of upper limb motion on locomotor-like muscle activities in the lower limb in persons with spinal cord injury (SCI). By imposing passive locomotion-like leg movements, all cervical(More)
It is now well recognized that muscle activity can be induced even in the paralyzed lower limb muscles of persons with spinal cord injury (SCI) by imposing locomotion-like movements on both of their legs. Although the significant role of the afferent input related to hip joint movement and body load has been emphasized considerably in previous studies, the(More)
This is, to our knowledge, the first report demonstrating the effects of orthotic gait training on the activity of the spinal locomotor neural networks. Three subjects with complete spinal cord injury (SCI) performed 1-h training with reciprocating gait orthosis 5 days/week for 12 weeks. The results showed that after 3 (n=1) or 6 weeks (n=2) of training,(More)
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion(More)
The purpose of this study was to characterize the effects of aging on the stretch reflex in the ankle muscles, and in particular to compare the effects on the ankle dorsi-flexor (tibialis anterior: TA) and the plantar-flexor (soleus: SOL). Stretch reflex responses were elicited in the TA and SOL at rest and during weak voluntary contractions in 20 elderly(More)
BACKGROUND The dynamic role of the trunk musculature, with respect to stability, has not been fully explored to date. The purpose of this study was, using a transient and multi-directional perturbation, to: (1) quantify the tonic level of activity in the superficial trunk musculature prior to any perturbation; (2) quantify the phasic activity in those same(More)
Excitability of both stretch reflex (SR) and motor evoked potential (MEP) elicited in the tibialis anterior (TA) muscle by transcranial magnetic stimulation were tested in standing humans. The results demonstrated significantly greater values for both SR and MEP in the TA while standing than while in the supine posture, although background electromyographic(More)
OBJECTIVE To test whether the phantom limb awareness could be altered by observing mirror reflection-induced visual feedback (MVF) in unilateral forearm amputees. METHODS Ten unilateral forearm amputees were asked to perform bilateral (intact and phantom) synchronous wrist motions with and without MVF. During wrist motion, electromyographic activities in(More)