Learn More
Brain-derived neurotrophic factor (BDNF) is one of neurotrophins involved in the development and maintenance of both the peripheral nervous system and CNS. Although the expression of BDNF and its receptor TrkB still occurs in the adult stage, their physiological role in the mature CNS is not fully understood. In the present study we examined in detail the(More)
The brain is spontaneously active even in the absence of external input. This ongoing background activity impacts neural information processing. We used functional multineuron calcium imaging (fMCI) to analyze the net structure of spontaneous CA3 network activity in hippocampal slice cultures loaded with Oregon Green 488 BAPTA-1 using a spinning disk(More)
Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent(More)
Brain-derived neurotrophic factor (BDNF) has been implicated in activity-dependent plasticity of neuronal function and network arrangement. To clarify how BDNF exerts its action, we evaluated the physiological, histological, and biochemical characteristics of cultured hippocampal neurons after long-term treatment with BDNF. Here we show that BDNF(More)
Hydrogen sulfide (H2S), which is well known as a toxic gas, is produced endogenously in mammalian tissues from L-cysteine mainly by two pyridoxal-5'-phosphate-dependent enzymes, cystathionine beta-synthetase and cystathionine gamma-lyase. Recently, we showed that cystathionine beta-synthetase in the brain produces H2S, and that H2S facilitates the induction(More)
Macroscopic changes in cerebral blood flow, such as those captured by functional imaging of the brain, require highly organized, large-scale dynamics of astrocytes, glial cells that interact with both neuronal and cerebrovascular networks. However, astrocyte activity has been studied mainly at the level of individual cells, and information regarding their(More)
Endothelin is a potent endothelium-derived vasoconstrictor peptide recently characterized from porcine and human vascular endothelial cells. Here we provide evidence that endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in porcine coronary artery smooth muscle. The vasoconstrictor action of endothelin is efficiently(More)
Large-scale recording from a population of neurons is a promising strategy for approaching the study of complex brain functions. Taking advantage of the fact that action potentials reliably evoke transient calcium fluctuations in the cell body, functional multineuron calcium imaging (fMCI) monitors the suprathreshold activity of hundreds of neurons.(More)
Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3(More)
Astrocytes exhibit spontaneous calcium fluctuations. These activities have not been captured by large-scale recordings, and little is known about their collective dynamics. In situ and in vivo calcium imaging from hundreds (up to 2195) of astrocytes in the mouse hippocampus and neocortex revealed that neighboring astrocytes spontaneously exhibited(More)