Learn More
Spinal astrocytes have important mechanistic contributions to the initiation and maintenance of neurodegenerative diseases and chronic pain. Under inflammatory conditions, spinal astrocytes are exposed to cytokines such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and these cytokines could alter astrocytic function by modulating connexin(More)
Glycine has been shown to possess important functions as a bidirectional neurotransmitter. At synaptic clefts, the concentration of glycine is tightly regulated by the uptake of glycine released from nerve terminals into glial cells by the transporter GLYT1. It has been recently demonstrated that protein kinase C (PKC) mediates the downregulation of GLYT1(More)
Spinal astrocytes have key roles in the regulation of pain transmission. However, the relationship between astrocytes and the circadian system in the spinal cord remains poorly defined. In the current study, the circadian variations in the expression of several clock genes in the lumbar spinal cord of mice were examined by using real-time PCR. The(More)
Platelet-activating factor (PAF) is a potent inflammatory lipid mediator in peripheral tissues. However, its role in mediation of nociception in central nervous system is unknown. In the present study, whether PAF plays some role in pain transduction in the spinal cord was studied in mice. Intrathecal injection of PAF induced tactile pain, tactile allodynia(More)
Although brain-derived neurotrophic factor (BDNF) is localized in primary sensory neurons and has crucial roles in nociceptive transduction, the mechanisms involved in regulation of BDNF exon-specific mRNA expression in dorsal root ganglion (DRG) neurons have yet to be determined. Rat primary cultures of DRG neurons were stimulated with(More)
Recently, multiple neurotrophic/growth factors have been proposed to play an important role in the therapeutic action of antidepressants. In this study, we prepared astrocyte- and neuron-enriched cultures from the neonatal rat cortex, and examined the changes in neurotrophic/growth factor expression by antidepressant treatment using real-time PCR. Treatment(More)
Substance P (SP) is synthesized in the dorsal root ganglion (DRG) and released from primary afferent neurons to convey information regarding noxious stimuli. The effects of the proinflammatory cytokine interleukin-1 (IL-1) beta on the release of SP were investigated using primary cultured rat DRG cells. Recombinant mouse IL-1beta added to the cells at 0.1(More)
We previously demonstrated that cultured rat dorsal root ganglion (DRG) cells respond to stimulation with interleukin-1 beta (IL-1 beta) by releasing substance P (SP), and this response is regulated via the cyclooxygenase (COX)-2 pathway. In this study, to ascertain the interaction between nitric oxide (NO) and prostaglandins in primary afferent neurons, we(More)
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve(More)
Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive(More)