Norimasa Tamehiro

Learn More
Cholesterol metabolism is tightly regulated at the cellular level. Here we show that miR-33, an intronic microRNA (miRNA) located within the gene encoding sterol-regulatory element-binding factor-2 (SREBF-2), a transcriptional regulator of cholesterol synthesis, modulates the expression of genes involved in cellular cholesterol transport. In mouse and human(More)
Atherosclerosis, driven by inflamed lipid-laden lesions, can occlude the coronary arteries and lead to myocardial infarction. This chronic disease is a major and expensive health burden. However, the body is able to mobilize and excrete cholesterol and other lipids, thus preventing atherosclerosis by a process termed reverse cholesterol transport (RCT).(More)
HIV-1 infection and antiretroviral therapy are associated with a dyslipidemia marked by low levels of high-density lipoprotein and increased cardiovascular disease, but it is unclear whether virion replication plays a causative role in these changes. The HIV-1 Nef protein can impair ATP cassette binding transporter A1 (ABCA1) cholesterol efflux from(More)
Working with a Streptomyces albus strain that had previously been bred to produce industrial amounts (10 mg/ml) of salinomycin, we demonstrated the efficacy of introducing drug resistance-producing mutations for further strain improvement. Mutants with enhanced salinomycin production were detected at a high incidence (7 to 12%) among spontaneous isolates(More)
Bile acid synthesis from cholesterol is tightly regulated via a feedback mechanism mediated by the farnesoid X receptor (FXR), a nuclear receptor activated by bile acids. Synthesis via the classic pathway is initiated by a series of cholesterol ring modifications and followed by the side chain cleavage. Several intermediates accumulate or are excreted as(More)
ABC transporter A1 (ABCA1) mediates and rate-limits biogenesis of high density lipoprotein (HDL), and hepatic ABCA1 plays a major role in regulating plasma HDL levels. HDL generation is also responsible for release of cellular cholesterol. In peripheral cells ABCA1 is up-regulated by the liver X receptor (LXR) system when cell cholesterol increases.(More)
We have found a novel phospholipid antibiotic (named bacilysocin) which accumulates within (or associates with) the cells of Bacillus subtilis 168 and determined the structure by nuclear magnetic resonance and mass spectrometry analyses. The structure of bacilysocin elucidated was 1-(12-methyltetradecanoyl)-3-phosphoglyceroglycerol. Bacilysocin demonstrated(More)
ABCA1 transport of cholesterol and phospholipids to nascent HDL particles plays a central role in lipoprotein metabolism and macrophage cholesterol homeostasis. ABCA1 activity is regulated both at the transcriptional level and at the post-translational level. To explore mechanisms involved in the post-translational regulation of the transporter, we have(More)
Release of cellular cholesterol by ATP-binding cassette transporter (ABC)A1 and apolipoproteins is a major source of plasma high-density lipoprotein (HDL). Expression of ABC transporter A1 (ABCA1) is directly stimulated by liver X receptor (LXR)/retinoid X receptor (RXR) activation. We evaluated the abilities of two RXR agonists, PA024 and HX630, to(More)