Learn More
We identified a rapid and novel system to effectively metabolize a large amount of H2O2 in the suspension cells of Scutellaria baicalensis Georgi. In response to an elicitor, the cells immediately initiate the hydrolysis of baicalein 7-O-beta-D-glucuronide by beta-glucuronidase, and the released baicalein is then quickly oxidized to 6,7-dehydrobaicalein by(More)
BACKGROUND Identification of causative genes in mendelian forms of Parkinson's disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinson's disease to identify novel causative genes. METHODS We did a genome-wide linkage analysis on eight affected and five unaffected(More)
Lipid droplets (LDs) are ubiquitous in eukaryotic cells, while excess free fatty acids and glucose in plasma are converted to triacylglycerol (TAG) and stored as LDs. However, the mechanism for the generation and growth of LDs in cells is largely unknown. We show here that the LC3 lipidation system essential for macroautophagy is involved in LD formation.(More)
Autophagy, a major bulk proteolytic pathway, contributes to intracellular protein turnover, together with protein synthesis. Both are subject to dynamic control by amino acids and insulin. The mechanisms of signaling and cross-talk of their physiological anabolic effects remain elusive. Recent studies established that amino acids and insulin induce p70 S6(More)
Both anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose(More)
Sterol regulatory element-binding protein-1 (SREBP-1) has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ) enhances perilipin (plin) gene expression, resulting in generating lipid droplets (LDs) to store triacylglycerol(More)
Bile acids secreted in the small intestine are reabsorbed in the ileum where they activate the nuclear farnesoid X receptor (FXR), which in turn stimulates expression of the ileal bile acid-binding protein (I-BABP). We first hypothesized that I-BABP may negatively regulate the FXR activity by competing for the ligands, bile acids. Reporter assays using(More)
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin-proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal(More)
Ferulic acid (FA), a naturally occurring polyphenol abundant in vegetables and rice bran, is known to possess a potent antioxidant activity, thereby protecting cells from oxidative stress. In the present study, we show that in addition to its known anti-oxidant activity, ferulic acid exerts substantial inhibitory activity on cellular mammalian target of(More)
Retromer is a complex of proteins that functions in the endosome-to-Golgi retrieval cargo transport pathway. VPS35 works as the central subunit of retromer to recognize the cargos and binds with VPS29 and VPS26 via distinct domains. We show that deficiency of VPS35 or VPS29 accompanies degradation of other subunits, whereas VPS26 deficiency had no effect on(More)