Norbert Hoefgen

Learn More
N-(3,5-Dichloro-pyrid-4-yl)-[1-(4-fluorobenzyl)-5-hydroxy-indole-3-yl]-glyoxylic acid amide (AWD 12-281) is a highly potent and selective phosphodiesterase 4 (PDE4) inhibitor that was designed to have a metabolic profile that was optimized for topical administration. The aim of the current study was to explore the pharmacological profile of intratracheally(More)
Novel imidazo[1,5-a]pyrido[3,2-e]pyrazines have been synthesized and characterized as both potent and selective phosphodiesterase 10A (PDE10A) inhibitors. For in vitro characterization, inhibition of PDE10A mediated cAMP hydrolysis was used and a QSAR model was established to analyze substitution effects. The outcome of this analysis was complemented by the(More)
Starting from the corresponding acetophenone and glycine derivatives, a series of new 3-aminopyrroles was synthesized in few steps. Using this procedure with hydrazine and hydroxylamine instead of the glycinates provides access to 3-aminopyrazoles and 5-amino 1,2-oxazoles. The various derivatives were tested for anticonvulsant activity in a variety of test(More)
New series of imidazolones and pyrrolones were synthesized. The compounds were tested regarding their anxiolytic properties due to modulation of the GABAA receptor response. Several derivatives exhibit considerable pharmacological activity while lacking the typical side effects of benzodiazepine receptor agonists.(More)
The selective phosphodiesterase 4 (PDE4) inhibitor AWD 12-281 is structurally optimized for topical administration. It has potent effects in models of lung inflammation if administered as a dry powder inhalation. It has also demonstrated its anti-inflammatory property in a mouse model of cutaneous inflammation after topical administration. The aim of this(More)
Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ-10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic(More)
The identification of highly potent and orally active phenylpyrazines for the inhibition of PDE10A is reported. The new analogues exhibit subnanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired druglike properties. Employing structure-based drug design approaches, we methodically explored(More)
Negative symptoms of schizophrenia are insufficiently treated by current antipsychotics. However, research is limited by the lack of validated models. Clinical data indicate that phencyclidine (PCP) abuse may induce symptoms resembling negative symptoms in humans. Based on that, Noda et al. proposed a model of PCP-induced increase of immobility in the(More)
Phosphodiesterase 2A (PDE2A) is highly and specifically expressed in particular brain regions that are affected by neurological disorders and in certain tumors. Development of a specific PDE2A radioligand would enable molecular imaging of the PDE2A protein via positron emission tomography (PET). Herein we report on the syntheses of three novel(More)