Learn More
BACKGROUND Epothilones are produced by the myxobacterium Sorangium cellulosum So ce90, and, like paclitaxel (Taxol((R))), they inhibit microtubule depolymerisation and arrest the cell cycle at the G2-M phase. They are effective against P-glycoprotein-expressing multiple-drug-resistant tumor cell lines and are more water soluble than paclitaxel. The total(More)
Imprinting at the H19/Igf2 locus depends on a differentially methylated domain (DMD) acting as a maternal-specific, methylation-sensitive insulator and a paternal-specific locus of hypermethylation. Four repeats in the DMD bind CTCF on the maternal allele and have been proposed to recruit methylation on the paternal allele. We deleted the four repeats and(More)
Although many of the questions raised by the discovery of imprinting have been answered, we have not yet accounted for tissue- or stage-specific imprinting. The Kcnq1 imprinted domain exhibits complex tissue-specific expression patterns co-existing with a domain-wide cis-acting control element. Transcription of the paternally expressed antisense non-coding(More)
Imprinted expression at the H19-Igf2 locus depends on a differentially methylated domain (DMD) that acts both as a maternal-specific, methylation-sensitive insulator and as a paternal-specific site of hypermethylation. Four repeats in the DMD bind CCCTC-binding factor (CTCF) on the maternal allele and have been proposed to attract methylation on the(More)
Insight into how the mammalian genome is structured in vivo is key to understanding transcriptional regulation. This is especially true in complex domains in which genes are coordinately regulated by long-range interactions between cis-regulatory elements. The regulation of the H19/Igf2 imprinted region depends on the presence of several cis-acting(More)
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2(More)
The imprinted Kcnq1 domain contains a differentially methylated region (KvDMR) in intron 11 of Kcnq1. The Kcnq1ot1 non-coding RNA emerges from the unmethylated paternal KvDMR in antisense direction, resulting in cis-repression of neighboring genes. The KvDMR encompasses the Kcnq1ot1 promoter, CTCF sites and other DNA elements, whose individual contribution(More)
Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha) plays a pivotal role in cellular stress responses and is implicated in DNA repair, cell cycle arrest and apoptosis.(1) Recently, it was proposed that GADD45A is a key regulator of active DNA demethylation by way of its role in DNA repair.(2) Barreto et al. reported that Gadd45a overexpression(More)
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase(More)
We have reported previously that the histamine H(2) receptor (H(2)R) can stimulate the phospholipase C (PLC) signaling pathway in mouse keratinocytes. In the present work, we examined the physiological mechanisms involved in this activation by studying histamine metabolism and H(2)R expression and coupling during mouse keratinocyte differentiation.(More)