Learn More
The basic replicon of the symbiotic plasmid (p42d) of Rhizobium etli CE3 is constituted by the repABC operon. Whereas RepC is essential for plasmid replication, RepA and RepB are involved in plasmid partitioning. Three incompatibility regions have been previously identified in this plasmid: the first one encodes RepA, a partitioning protein that also(More)
Adenylate cyclases (ACs) catalyze the formation of 3',5'-cyclic AMP (cAMP) from ATP. A novel AC-encoding gene, cyaC, was isolated from Rhizobium etli by phenotypic complementation of an Escherichia coli cya mutant. The functionality of the cyaC gene was corroborated by its ability to restore cAMP accumulation in an E. coli cya mutant. Further,(More)
The repABC replicons contain an operon encoding the initiator protein (RepC) and partitioning proteins (RepA and RepB). The latter two proteins negatively regulate the transcription of the operon. In this article we have identified two novel regulatory elements, located within the conserved repB-repC intergenic sequence, which negatively modulate the(More)
Vancomycin or erythromycin resistance and the stability determinants, δω and ωεζ, of Enterococci and Streptococci plasmids are genetically linked. To unravel the mechanisms that promoted the stable persistence of resistance determinants, the early stages of Streptococcus pyogenes pSM19035 partitioning were biochemically dissected. First, the homodimeric(More)
The Streptococcus pyogenes pSM19035 low-copy-number θ-replicating plasmid encodes five segregation (seg) loci that contribute to plasmid maintenance. These loci map outside of the minimal replicon. The segA locus comprises β2 recombinase and two six sites, and segC includes segA and also the γ topoisomerase and two ssiA sites. Recombinase β2 plays a role(More)
In Firmicutes, small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins, in concert with cis-acting plasmid-borne parS and the host chromosome, secure stable plasmid inheritance in a growing bacterial population. This study shows that (ω:YFP)2 binding to parS facilitates plasmid clustering in the cytosol. (δ:GFP)2 requires ATP binding but not hydrolysis(More)
  • 1