Learn More
The frequency moments of a sequence containing m i elements of type i, for 1 ≤ i ≤ n, are the numbers F k = n i=1 m k i. We consider the space complexity of randomized algorithms that approximate the numbers F k , when the elements of the sequence are given one by one and cannot be stored. Surprisingly, it turns out that the numbers F 0 , F 1 and F 2 can be(More)
Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform(More)
The use of randomness is now an accepted tool in Theoretical Computer Science but not everyone is aware of the underpinnings of this methodology in Combinatorics - particularly, in what is now called the probabilistic Method as developed primarily by Paul Erdo&huml;s over the past half century. Here I will explore a particular set of problems - all dealing(More)
Bounds for the chromatic number and for some related parameters of a graph are obtained by applying algebraic techniques. In particular, the following result is proved: If G is a directed graph with maximum outdegree d, and if the number of Eulerian subgraphs of G with an even number of edges differs from the number of Eulerian subgraphs with an odd number(More)
Let P be a property of graphs. An-test for P is a randomized algorithm which, given the ability to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or not, distinguishes, with high probability, between the case of G satisfying P and the case that it has to be modified by adding and removing more than n 2 edges(More)
The Regularity Lemma of Szemer edi is a result that asserts that every graph can be partitioned in a certain regular way. This result has numerous applications, but its known proof is not algorithmic. Here we rst demonstrate the computational diiculty of nding a regular partition; we show that deciding if a given partition of an input graph satisses the(More)