Noemí Marina-García

Learn More
The innate immune system comprises several classes of pattern-recognition receptors, including Toll-like receptors (TLRs) and nucleotide binding and oligomerization domain-like receptors (NLRs). TLRs recognize microbes on the cell surface and in endosomes, whereas NLRs sense microbial molecules in the cytosol. In this review, we focus on the role of NLRs in(More)
Muramyl dipeptide (MDP), the microbial activator of nucleotide-binding oligomerization domain 2 (Nod2), induces NF-kappaB and MAPK activation, leading to the production of multiple anti-bacterial and proinflammatory molecules. In addition, MDP has been implicated in IL-1beta secretion through the regulation of caspase-1. However, the mechanisms that mediate(More)
Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting(More)
Natural killer (NK) cells play an important role in the defense against viral infections. Activation of resting NK cells is tightly controlled by the balance of surface inhibitory and activating receptors and aided by cytokines released by accessory cells along the anti-viral response. On the other hand, NK cells express functional pattern recognition(More)
Calcium-independent phospholipase A2 (iPLA2) has been suggested to play an important role in the activation of caspase-1 induced by lipopolysaccharides (LPS). Here, we used pharmacological and genetic approaches to study the role of iPLA 2 in the activation of caspase-1. Bromoenol lactone (BEL), an inhibitor that was originally used to support a role for(More)
Muramyl dipeptide (MDP), the NOD2 agonist, induces NF-kappaB and MAPK activation leading to the production of antimicrobial and proinflammatory molecules. MDP is internalized into acidified vesicles in macrophages. However, the endocytic mechanism of MDP uptake that induces NOD2 signaling is unknown. We now report the identification of an endocytosis(More)
BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn's disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD(More)
  • 1