Learn More
P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct(More)
Odorant receptors and signaling proteins are localized to sensory cilia on olfactory dendrites. Using a GFP-tagged odorant receptor protein, Caenorhabditis elegans ODR-10, we characterized protein sorting and transport in olfactory neurons in vivo. ODR-10 is transported in rapidly moving dendritic vesicles that shuttle between the cell body and the cilia.(More)
Transcription factor IIIC2 (TFIIIC2), together with other transcription factors (TFIIIB and TFIIIC1), is required for the in vitro transcription of tRNA and adenovirus VA genes by RNA polymerase III. Previous studies have shown that TFIIIC2 is a high molecular weight (approximately 500,000) protein which binds with high affinity to the B-box promoter(More)
Animals in complex environments must discriminate between salient and uninformative sensory cues. Caenorhabditis elegans uses one pair of olfactory neurons called AWC to sense many different odorants, yet the animal can distinguish each odorant from the others in discrimination assays. We demonstrate that the transmembrane guanylyl cyclase ODR-1 is(More)
In conjunction with other general initiation factors, the TATA box-binding protein (TBP) can direct basal transcription by RNA polymerase II from TATA-containing promoters, but its stable interaction with TBP-associated factors (TAFs) in the TFIID complex is required both for activator-dependent transcription and for basal transcription directed by an(More)
The tax-4 and tax-2 genes of Caenorhabditis elegans are essential for normal olfaction, gustation, and thermosensation, suggesting that they have a role in sensory transduction. The predicted products of these genes are similar to the cyclic nucleotide-gated (CNG) channel subunits used in vertebrate vision and olfaction: TAX-4 is highly related to those(More)
Prolonged odor exposure causes a specific, reversible adaptation of olfactory responses. A genetic screen for negative regulators of olfaction uncovered mutations in the cGMP-dependent protein kinase EGL-4 that disrupt olfactory adaptation in C. elegans. G protein-coupled olfactory receptors within the AWC olfactory neuron signal through cGMP and a(More)
Prolonged stimulation leads to specific and stable changes in an animal's behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein(More)
Inactivation of the p53 tumor suppressor pathway allows cell survival in times of stress and occurs in many human cancers; however, normal embryonic stem cells and some cancers such as neuroblastoma maintain wild-type human TP53 and mouse Trp53 (referred to collectively as p53 herein). Here we describe a miRNA, miR-380-5p, that represses p53 expression via(More)
To navigate a complex and changing environment, an animal's sensory neurons must continually adapt to persistent cues while remaining responsive to novel stimuli. Long-term exposure to an inherently attractive odor causes Caenorhabditis elegans to ignore that odor, a process termed odor adaptation. Odor adaptation is likely to begin within the sensory(More)