Noejung Park

Learn More
Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the(More)
Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes,(More)
and acoustic streaming X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, W. I. Milne, D. S. Lee, N. M. Park, J. Park, Y. J. Choi, S. H. Kim, and S. Maeng Centre for Advanced Photonics and Electronics, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, CB3 0FA, United Kingdom Electronics and Telecommunications Research institute(More)
Hybridization of organometallic complexes with graphene-based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [Co(II) (acac)2 ] (acac=acetylacetonate),(More)
Using 63 bit simplex coding we demonstrate enhanced performance in Raman-based distributed temperature sensors using low-power (80 mW) laser diodes. Achieved 5.8 dB improvement in dynamic range allows for temperature sensing over 17 km with 15m/5K spatial/temperature resolution. © 2005 Optical Society of America OCIS codes: 060.2370, 190.5650
A series of new fluorescent probes bearing tren-spaced rhodamine B and dansyl groups have been synthesized. Compound 1 exhibits selective changes in the absorption and the emission spectra toward Cu2+ ion over miscellaneous metal cations. Among 1-3, 1 shows the best FRET efficiency through dansyl emission to rhodamine absorption for the Cu2+ ion.
A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl2, Br2 and I2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination(More)
Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that(More)
Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite(More)
A class of double-perovskite compounds display fast oxygen ion diffusion and high catalytic activity toward oxygen reduction while maintaining excellent compatibility with the electrolyte. The astoundingly extended stability of NdBa(1-x)Ca(x)Co2O(5+δ) (NBCaCO) under both air and CO2-containing atmosphere is reported along with excellent electrochemical(More)