Learn More
A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl2, Br2 and I2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination(More)
Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite(More)
A series of new fluorescent probes bearing tren-spaced rhodamine B and dansyl groups have been synthesized. Compound 1 exhibits selective changes in the absorption and the emission spectra toward Cu2+ ion over miscellaneous metal cations. Among 1-3, 1 shows the best FRET efficiency through dansyl emission to rhodamine absorption for the Cu2+ ion.
Surface acoustic wave ͑SAW͒ devices were fabricated on ZnO thin films deposited on Si substrates. Effects of ZnO film thickness on the wave mode and resonant frequency of the SAWs have been investigated. Rayleigh and Sezawa waves were detected, and their resonant frequencies decrease with increase in film thickness. The Sezawa wave has much higher acoustic(More)
Field emission properties of carbon nanotubes coated with a single layer of boron nitride are calculated using the first-principles pseudopotential method. At lower bias voltage, the emission current of the coated nanotube is comparable to that of the bare carbon nanotube and is dominated by the contribution from localized states at the tip of the tube. At(More)
Electrocatalysts for oxygen reduction are a critical component that may dramatically enhance the performance of fuel cells and metal-air batteries, which may provide the power for future electric vehicles. Here we report a novel bio-inspired composite electrocatalyst, iron phthalocyanine with an axial ligand anchored on single-walled carbon nanotubes,(More)
The development of a versatile method for nitrogen-doping of graphitic structure is an important challenge for many applications, such as energy conversions and storages and electronic devices. Here, we report a simple but efficient method for preparing nitrogen-doped graphene nanoplatelets via wet-chemical reactions. The reaction between monoketone (C═O)(More)
Combining total energy calculations with a search of phase space, we investigate the microscopic fusion mechanism of C 60 fullerenes. We find that the ͑2+2͒ cycloaddition reaction, a necessary precursor for fullerene fusion, may be accelerated inside a nanotube. Fusion occurs along the minimum energy path as a finite sequence of Stone-Wales transformations,(More)
Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the(More)