Learn More
A series of new fluorescent probes bearing tren-spaced rhodamine B and dansyl groups have been synthesized. Compound 1 exhibits selective changes in the absorption and the emission spectra toward Cu2+ ion over miscellaneous metal cations. Among 1-3, 1 shows the best FRET efficiency through dansyl emission to rhodamine absorption for the Cu2+ ion.
A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl2, Br2 and I2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination(More)
Surface acoustic wave ͑SAW͒ devices were fabricated on ZnO thin films deposited on Si substrates. Effects of ZnO film thickness on the wave mode and resonant frequency of the SAWs have been investigated. Rayleigh and Sezawa waves were detected, and their resonant frequencies decrease with increase in film thickness. The Sezawa wave has much higher acoustic(More)
Field emission properties of carbon nanotubes coated with a single layer of boron nitride are calculated using the first-principles pseudopotential method. At lower bias voltage, the emission current of the coated nanotube is comparable to that of the bare carbon nanotube and is dominated by the contribution from localized states at the tip of the tube. At(More)
Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that(More)
Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite(More)
Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the(More)
A class of double-perovskite compounds display fast oxygen ion diffusion and high catalytic activity toward oxygen reduction while maintaining excellent compatibility with the electrolyte. The astoundingly extended stability of NdBa(1-x)Ca(x)Co2O(5+δ) (NBCaCO) under both air and CO2-containing atmosphere is reported along with excellent electrochemical(More)
We performed first-principles calculations to investigate the hydrogen storage characteristics of carbon-based 3-D solid structures, called covalently bonded graphenes (CBGs). Using the density functional method and the Møller-Plesset perturbation method, we show that H2 molecular binding in the CBGs is stronger than that on an isolated graphene with an(More)