Learn More
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.).(More)
Styrene monooxygenase (StyA, SMOA)- and flavin oxidoreductase (StyB, SMOB)-coding genes of styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10 were successfully expressed in Escherichia coli. Determined amino acid sequences of StyAs and StyBs of ST-5 and ST-10 showed more similarity with those of Pseudomonas than with self-sufficient styrene(More)
In microorganisms, menaquinone is an obligatory component of the electron-transfer pathway. It is derived from chorismate by seven enzymes in Escherichia coli. However, a bioinformatic analysis of whole genome sequences has suggested that some microorganisms, including pathogenic species such as Helicobacter pylori and Campylobacter jejuni, do not have(More)
A novel phenylacetaldehyde reductase was purified about 50-fold to homogeneity from Corynebacterium sp. strain ST-10, which can assimilate gaseous styrene as the sole carbon and energy source. The enzyme was inductively synthesized when grown on gaseous styrene and had an important role in styrene metabolism in vivo. The enzyme had a molecular weight of(More)
We describe an efficient method for producing both enantiomers of chiral alcohols by asymmetric hydrogen-transfer bioreduction of ketones in a 2-propanol (IPA)–water medium with E. coli biocatalysts expressing phenylacetaldehyde reductase (PAR: wild-type and mutant enzymes) from Rhodococcus sp. ST-10 and alcohol dehydrogenase from Leifsonia sp. S749(More)
BACKGROUND Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and(More)
BACKGROUND The use of knowledge-based potential function is a powerful method for protein structure evaluation. A variety of formulations that evaluate single or multiple structural features of proteins have been developed and studied. The performance of functions is often evaluated by discrimination ability using decoy structures of target proteins. A(More)
We found two NADH-dependent reductases (QNR and bacC) in Microbacterium luteolum JCM 9174 (M. luteolum JCM 9174) that can reduce 3-quinuclidinone to optically pure (R)-(-)-3-quinuclidinol. Alcohol dehydrogenase from Leifsonia sp. (LSADH) was combined with these reductases to regenerate NAD+ to NADH in situ in the presence of 2-propanol as a hydrogen donor.(More)
Penicillium citrinum was found to catalyze the reduction of methyl 4-bromo-3-oxobutyrate to methyl (S)-4-bromo-3-hydroxybutyrate [(S)-BHBM] with high optical purity. From the strain, a cDNA clone encoding a novel NADPH-dependent alkyl 4-halo-3-oxobutyrate reductase (KER) was isolated. Escherichia coli cells overexpressing KER produced (S)-BHBM in the(More)
Phenylacetaldehyde reductase (PAR) is suitable for the conversion of various aryl ketones and 2-alkanones to corresponding chiral alcohols. 2-Propanol acts as a substrate solvent and hydrogen donor of coupled cofactor regeneration during the conversion of substrates catalyzed by PAR. To improve the conversion efficiency in high concentrations of substrate(More)