Learn More
The gene encoding Leifsonia alcohol dehydrogenase (LSADH), a useful biocatalyst for producing (R)-chiral alcohols, was cloned from the genomic DNA of Leifsonia sp. S749. The gene contained an opening reading frame consisting of 756 nucleotides corresponding to 251 amino acid residues. The subunit molecular weight was calculated to be 24,999, which was(More)
Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene(More)
An asymmetric hydrogen-transfer biocatalyst consisting of mutated Rhodococcus phenylacetaldehyde reductase (PAR) or Leifsonia alcohol dehydrogenase (LSADH) was applied for some water-soluble ketone substrates. Among them, 4-hydroxy-2-butanone was reduced to (S)/(R)-1,3-butanediol, a useful intermediate for pharmaceuticals, with a high yield and(More)
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.).(More)
We found two NADH-dependent reductases (QNR and bacC) in Microbacterium luteolum JCM 9174 (M. luteolum JCM 9174) that can reduce 3-quinuclidinone to optically pure (R)-(-)-3-quinuclidinol. Alcohol dehydrogenase from Leifsonia sp. (LSADH) was combined with these reductases to regenerate NAD+ to NADH in situ in the presence of 2-propanol as a hydrogen donor.(More)
Prenyltransferases catalyze the sequential condensation of isopentenyl diphosphate into prenyl diphosphates with specific chain lengths. Pioneering studies demonstrated that the product specificities of type I prenyltransferases were mainly determined by the amino acid residues at the 4th and 5th positions before the first aspartate-rich motif (FARM) of the(More)
Styrene monooxygenase (StyA, SMOA)- and flavin oxidoreductase (StyB, SMOB)-coding genes of styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10 were successfully expressed in Escherichia coli. Determined amino acid sequences of StyAs and StyBs of ST-5 and ST-10 showed more similarity with those of Pseudomonas than with self-sufficient styrene(More)
BACKGROUND The use of knowledge-based potential function is a powerful method for protein structure evaluation. A variety of formulations that evaluate single or multiple structural features of proteins have been developed and studied. The performance of functions is often evaluated by discrimination ability using decoy structures of target proteins. A(More)
In microorganisms, menaquinone is an obligatory component of the electron-transfer pathway. It is derived from chorismate by seven enzymes in Escherichia coli. However, a bioinformatic analysis of whole genome sequences has suggested that some microorganisms, including pathogenic species such as Helicobacter pylori and Campylobacter jejuni, do not have(More)
We have previously cloned a DNA fragment that contained four ORFs and was confirmed to participate in viguiepinol {3-hydroxypimara-9(11),15-diene} biosynthesis by a heterologous expression experiment, from Streptomyces sp. strain KO-3988. Of the four ORFs, ORF2 and ORF4 were confirmed to encode an ent-CDP synthase and a GGDP synthase, respectively, by(More)