Nobutaka Tsujiuchi

Learn More
The purpose of this research is to construct an intelligent upper limb prosthesis control system that uses electromyogram (EMG) signals. The signal processing of EMG signals is performed using a linear multiple regression model that can learn parameters in a short time. Using this model, joint angles are predicted, and the motion pattern discrimination is(More)
Recently, various prosthetic arms have been developed, but few are both attractive and functional. Considering human coexistence, prosthetic arms must be both safe and flexible. In this research, we developed a novel prosthetic arm with a five-fingered prosthetic hand using our original pneumatic actuators and a slender tendon-driven wrist using a wire(More)
In human gait motion analysis, which is one useful method for efficient physical rehabilitation to define various quantitative evaluation indices, ground reaction force, joint angle and joint loads are measured during gait. To obtain these data as unrestrained gait measurement, a novel gait motion analysis system using mobile force plates and attitude(More)
The objective of this study is to develop a method of discriminating real-time motion from electromyogram (EMG) signals. We previously proposed a motion discrimination method. This method could discriminate five motions (hand opening, hand closing, hand chucking, wrist extension, and wrist flexion) at a rate of above 90 percent from four channel EMG signals(More)
This paper describes understanding and modeling of the dynamic characteristic of the tractor frame, and decrease of vibration and noise of the tractor by design modification of the frame. First of all, we measured the vibration characteristics each part of the tractor, and the noise characteristic in the cabin. As the result, we confirmed that the bending(More)