Nobutaka Nakashima

Learn More
Reliable methods for conditional gene silencing in bacteria have been elusive. To improve silencing by expressed antisense RNAs (asRNAs), we systematically altered several design parameters and targeted multiple reporter and essential genes in Escherichia coli. A paired termini (PT) design, where flanking inverted repeats create paired dsRNA termini, proved(More)
We isolated, sequenced, and characterized the cryptic plasmid pRE8424 from Rhodococcus erythropolis DSM8424. Plasmid pRE8424 is a 5,987-bp circular plasmid; it carries six open reading frames and also contains cis-acting elements, specifically a single-stranded origin and a double-stranded origin, which are characteristic of rolling-circle-replication(More)
In this study, we describe a method of simultaneous conditional gene silencing of up to four genes in Escherichia coli by using antisense RNAs. We used antisense RNAs with paired termini, which carried flanking inverted repeats to create paired double-stranded RNA termini; these RNAs have been proven to have high silencing efficacy. To express antisense(More)
Rhodococcus opacus strain SAO101 was shown to degrade on various polycyclic aromatic hydrocarbons such as naphthalene, dibenzofuran (DF), and dibenzo-p-dioxin (DD). One of the unique traits of the strain SAO101 is its ability to oxidize DF compounds by lateral dioxygenation. To clone the lateral dioxygenase gene involved in compound degradation in strain(More)
UNLABELLED Here, we report on the construction of doxycycline (tetracycline analogue)-inducible vectors that express antisense RNAs in Escherichia coli. Using these vectors, the expression of genes of interest can be silenced conditionally. The expression of antisense RNAs from the vectors was more tightly regulated than the previously constructed(More)
BACKGROUND Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development.(More)
Vascular endothelial growth factor (VEGF) is an angiogenesis factor with proinflammatory roles. Flt-1 is one of the specific receptors for VEGF, and soluble flt-1 (sflt-1) binds to VEGF and competitively inhibits it from binding to the receptors. We examined the role of VEGF in the pathophysiology of bleomycin-induced pneumopathy in mice, using a new(More)
Escherichia coli cells are the most commonly used host cells for large-scale production of recombinant proteins, but some proteins are difficult to express in E. coli. Therefore, we tested the nocardioform actinomycete Rhodococcus erythropolis, which grows at temperatures ranging from 4 to 35 degrees C, as an expression host cell. We constructed inducible(More)
A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p,(More)
Actinomycetes (Actinobacteria) are highly attractive as cell factories or bioreactors for applications in industrial, agricultural, environmental, and pharmaceutical fields. Genome sequencing of several species of actinomycetes has paved the way for biochemical and structural analysis of important proteins and the production of such proteins as recombinants(More)