Learn More
The adhesion and friction of smooth polymer surfaces were studied below the glass transition temperature by use of a surface forces apparatus. The friction force of a crosslinked polymer was orders of magnitude less than that of an uncrosslinked polymer. In contrast, after chain scission of the outermost layers, the adhesion hysteresis and friction forces(More)
Nanobubbles at an interface between a hydrophobic solid and water have a wide range of implications, but the evidence for their existence is still being debated. Here we artificially induced nanobubbles on freshly cleaved HOPG substrates in water using the protocol developed previously and subjected the system to moderate levels of degassing (approximately(More)
The formation and disappearance of liquid bridges between two surfaces can occur either through equilibrium or nonequilibrium processes. In the first instance, the bridge molecules are in thermodynamic equilibrium with the surrounding vapor medium. In the second, chemical potential gradients result in material transfer; mechanical instabilities, because of(More)
Interfacial nanobubbles (INBs) on a solid surface in contact with water have drawn widespread research interest. Although several theoretical models have been proposed to explain their apparent long lifetimes, the underlying mechanism still remains in dispute. In this work, the morphological evolution of INBs was examined in air-equilibrated and partially(More)
In recent years there has been an accumulation of evidence for the existence of nanobubbles on hydrophobic surfaces in water, despite predictions that such small bubbles should rapidly dissolve because of the high internal pressure associated with the interfacial curvature and the resulting increase in gas solubility. Nanobubbles are of interest among(More)
Contamination has previously been invoked to explain the flat shape and the long lifetimes of interfacial nanobubbles (INBs). In this study, the effects of surfactants on the formation and the stability of INBs were investigated when surfactants were added to the system before, during, and after the standard solvent exchange procedure (SSEP) for the(More)
The molecular details of adhesion mechanics in phospholipid bilayers have been studied using atomic force microscopy (AFM). Under tension fused bilayers of dipalmitoylphosphatidylcholine (DPPC) yield to give non-distance dependent and discrete force plateaux of 45.4, 81.6 and 113+/-3.5 pN. This behaviour may persist over distances as great as 400 nm and(More)
Recently reported results indicate that the formation of surfactant-free, oil-in-water emulsions can be significantly enhanced by the almost complete removal of dissolved gases and that the reintroduction of dissolved gases does not immediately destabilize the already-formed emulsions. These initial experiments have been repeated and extended to include a(More)
We studied the thermodynamic stability of interfacial gaseous states on atomically smooth highly ordered pyrolytic graphite (HOPG) in water using atomic force microscopy. Quasi-two-dimensional gas layers (micropancakes) required a higher supersaturation of gas than spherical-cap-shaped nanobubbles. The two forms of gas coexisted at a sufficiently high(More)