Learn More
In recent decades, the seasonal variation in NO3 − discharge from forest ecosystems has been used increasingly by ecologists and hydrologists as a diagnostic indicator of the nutrient status of ecosystems. Major factors underlying the seasonal patterns of stream NO3 − concentration include seasonal variations in (1) ecosystem nutrient demand, (2) solute(More)
Nitrogen (N) cycles have been directly linked to the functional stability of ecosystems because N is an essential element for life. Furthermore, the supply of N to organisms regulates primary productivity in many natural ecosystems. Microbial communities have been shown to significantly contribute to N cycles because many N-cycling processes are microbially(More)
Topography affects the soil physicochemistry, soil N dynamics, and plant distribution and growth in forests. In Japan, many forests are found in mountainous areas and these traits are often highly variable along steep slopes. In this study, we investigated how the microbial population dynamics reflected the bioavailable N dynamics with the physicochemical(More)
This data paper provides some biogeochemical nitrogen (N) properties and related chemical properties of forest soils from 39 sites throughout the Japanese archipelago. The data set was collected and analyzed under the GRENE (Green Network of Excellence) environmental information project and the ReSIN (Regional and comparative Soil Incubation study on(More)
We conducted a year-round measurement of gross N transformation rates using the 15N dilution method, and analyzed seasonal changes and the mechanisms regulating gross N transformation in the Kiryu Experimental Forest in central Japan. While soil microbial biomass C (SMB-C) decreased from the dormant to growing seasons at the organic (O) horizon, no(More)
Nitrogen inputs into stream and river ecosystems, and the factors influencing those inputs, are important for various ecological and environmental concerns. Reliable information on where and how nitrogen compounds flow into aquatic ecosystems is indispensable to understanding the nutrient status of these ecosystems. Such information should include the(More)
We tested the potential of estimating in-field (in situ) nitrogen (N) transformation rates based on soil temperature data and N transformation parameters (Q10 and N transformation rates at standard temperature) obtained through laboratory incubations at three constant temperatures for 4 weeks. This test was conducted based on a comparison between in situ(More)
  • 1