Nobuhiko Nomura

Learn More
Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P. aeruginosa has abilities(More)
Chronic Pseudomonas aeruginosa lung infection is the most severe complication in patients with cystic fibrosis (CF). The infection is characterized by the formation of biofilm surrounded by numerous polymorphonuclear leukocytes (PMNs) and strong O2 depletion in the endobronchial mucus. We have reported that O2 is mainly consumed by the activated PMNs, while(More)
Pseudomonas aeruginosa is well adapted to grow in anaerobic environments in the presence of nitrogen oxides by generating energy through denitrification. Environmental cues, such as oxygen and nitrogen oxide concentrations, are important in regulating the gene expression involved in this process. Recent data indicate that P. aeruginosa also employs(More)
Pseudomonas aeruginosa responds to environmental changes and regulates its life cycle from planktonic to biofilm modes of growth. The control of cell attachment to surfaces is one of the critical processes that determine this transition. Environmental signals are typically relayed to the cytoplasm by second messenger systems. We here demonstrated that the(More)
Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a(More)
Membrane vesicles (MVs) of Porphyromonas gingivalis are regarded as an offensive weapon of the bacterium, leading to tissue deterioration in periodontal disease. Therefore, isolation of highly purified MVs is indispensable to better understand the pathophysiological role of MVs in the progression of periodontitis. MVs are generally isolated by a(More)
  • 1