Learn More
Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase zeta (PTPzeta)/receptor-like protein tyrosine phosphatase beta (RPTPbeta) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPzeta isoforms are localized along the radial glial fibers, a scaffold for neuronal(More)
PTPzeta/RPTPbeta, a receptor-type protein tyrosine phosphatase synthesized as a chondroitin sulfate (CS) proteoglycan, uses a heparin-binding growth factor pleiotrophin (PTN) as a ligand, in which the CS portion plays an essential role in ligand binding. Using an organotypic slice culture system, we tested the hypothesis that PTN-PTPzeta signaling is(More)
Chondroitin sulfate (CS) proteoglycans bind with various proteins through CS chains in a CS structure-dependent manner, in which oversulfated structures, such as iB (IdoA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate)), D (GlcA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate)), and E (GlcAbeta1-3GalNAc(4,6-O-disulfate)) units constitute the critical functional module. In(More)
Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl(More)
Midkine (MK), a heparin-binding growth factor, suppresses apoptosis of embryonic neurons in culture, induced by serum deprivation. Receptor-type protein tyrosine phosphatase zeta (PTP zeta) is a chondroitin sulfate proteoglycan with a transmembrane domain and intracellular tyrosine phosphatase domains. The activity of MK was abolished by digestion with(More)
Heparan sulfate (HS) binds with various proteins including growth factors, morphogens, and extracellular matrix molecules to regulate their biological functions. These regulatory interactions are considered to be dependent on the structure of HS, which is determined by HS sulfotransferases. To gain insights into the functions of HS sulfotransferases in the(More)
Chondroitin sulfate is popular in the field of neuroscience, because the treatment of nervous tissues with chondroitinase ABC, which degrades chondroitin sulfate up to unsaturated disaccharides, causes severe changes in various aspects of neural development and functions. Chondroitinase ABC treatments of developing nervous tissue impair the growth and(More)
PTPzeta and lectican family members are major chondroitin sulfate proteoglycans (CS-PGs) in the brain, which bind with many proteins via core protein and CS portions. Recent studies revealed that the oversulfated structures in CS constitute high affinity binding sites for various growth factors and axon guidance molecules, and play important roles in the(More)
Chondroitin sulfate and heparan sulfate proteoglycans are major components of the cell surface and extracellular matrix in the brain. Both chondroitin sulfate and heparan sulfate are unbranched highly sulfated polysaccharides composed of repeating disaccharide units of glucuronic acid and N-acetylgalactosamine, and glucuronic acid and N-acetylglucosamine,(More)
The accelerated senescence-prone SAMP10 mouse strain is a model for age-dependent neurodegeneration and is characterized by brain atrophy and deficits in learning and memory. Because perineuronal nets play an important role in the synaptic plasticity of adult brains, we examined the distributions of molecules that constitute perineuronal nets in SAMP10(More)