Noah Schweber

Learn More
We study the degree spectra and reverse-mathematical applications of computably enumerable and co-computably enu-merable partial orders. We formulate versions of the chain/antichain principle and ascending/descending sequence principle for such orders , and show that the latter is strictly stronger than the latter. We then show that every ∅-computable(More)
In this paper, we investigate connections between structures present in every generic extension of the universe V and computability theory. We introduce the notion of generic Muchnik reducibility that can be used to to compare the complexity of uncountable structures; we establish basic properties of this reducibility, and study it in the context of generic(More)
  • 1