Learn More
We present a technique for in situ measurement of the vertical and spatial stratigraphic distribution of snow optical grain size with a coupled contact illumination probe and field spectroradiometer. Accurate measurements of optical-equivalent grain size are critical for modeling radiative properties of snow such as spectral albedo and microwave emission.(More)
Direct measurements of winter water loss due to sublimation were made in a sub-alpine forest in the Rocky Mountains of Colorado. Above-and below-canopy eddy covariance systems indicated substantial losses of winter-season snow accumulation in the form of snowpack (0Ð41 mm d 1) and intercepted snow (0Ð71 mm d 1) sublimation. The partitioning between these(More)
Although many studies have investigated the effects of forest cover on streamflow and runoff, and several have examined the effects of canopy density on snowpack accumulation, the impacts of forest canopy density on spatial patterns of snowmelt input to catchments remain relatively underquantified. We performed an intensive snow depth and density survey(More)
Snowpack temperatures from a subalpine forest below Niwot Ridge, Colorado, are examined with respect to atmospheric conditions and the 30-min above-canopy and subcanopy eddy covariance fluxes of sensible Q h and latent Q e heat. In the lower snowpack, daily snow temperature changes greater than 18C day 21 occurred about 1–2 times in late winter and early(More)
[1] We used remotely sensed snow cover data and a physically based snowmelt model to estimate the spatial distribution of energy fluxes, snowmelt, snow water equivalent, and snow cover extent over the different land cover types within the Green Lakes Valley, Front Range, Colorado. The spatially explicit snowpack model was coupled to the Alpine Hydrochemical(More)
The loss of snow cover and the initiation of streamflow are key triggers for both terrestrial and aquatic biota. Landscape-scale snowmelt and streamflow dynamics are difficult to estimate, however, because they integrate large spatial extents and can vary rapidly in time. Remotely sensed observations are often temporally discontinuous and point observations(More)
Observation and quantification of the Earth’s surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology.(More)