Noah Malmstadt

Learn More
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly(More)
To explore mechanisms of nanoparticle interactions with and trafficking across lung alveolar epithelium, we utilized primary rat alveolar epithelial cell monolayers (RAECMs) and an artificial lipid bilayer on filter model (ALBF). Trafficking rates of fluorescently labeled polystyrene nanoparticles (PNPs; 20 and 100 nm, carboxylate (negatively charged) or(More)
Oxidation of unsaturated lipids in cellular membranes has been shown to cause severe membrane damage and potentially cell death. The presence of oxidized lipid species in the membrane is known to cause changes in membrane properties, such as decreased fluidity. This study uses giant unilamellar vesicles (GUVs) to measure passive transport across membranes(More)
The efficient upstream processing of complex biological or environmental samples for subsequent biochemical analysis remains a challenge in many analytical systems. New microfluidic platforms that provide multidiagnostic capabilities on single chips face a similar challenge in getting specific analytes purified or contaminants removed in different fluid(More)
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon(More)
Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes and controlling intracellular transport and signal transduction. Using an all-atom molecular dynamics approach, we study the process of CHOL interleaflet transport (flip-flop) in a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer over a time period of 15 μs. We(More)
We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily harvested for individual study. By controlling the lipid(More)
There is a current need for simple methods for immobilizing biomolecules within microfluidic channels. Here, a technique is reported for reversibly immobilizing immunoassay components in a channel zone that can be simply controlled by integrated heating elements. Latex beads were modified with the temperature-responsive polymer(More)
Due to their sensitivity and temporal response, optical microresonators are used extensively in the biosensor arena, particularly in the development of label-free diagnostics and measurement of protein kinetics. In the present letter, we investigate using microcavities to probe molecules within biomimetic membranes. Specifically, a method for(More)
We demonstrate successful incorporation of the G protein coupled receptor 5-HT1A into giant unilamellar vesicles using an agarose rehydration method. With direct observation using fluorescence techniques, we report preferential segregation of 5-HT1A into the cholesterol-poor liquid disordered phase of the membrane, contradicting previous reports of lipid(More)