Noé G Almarza

Learn More
We propose an efficient algorithm to sample the volume in Monte Carlo simulations in the isobaric-isothermal ensemble. The method is designed to be applied in the simulation of hard-core models at high density. The algorithm is based in the generation of clusters of particles. At the volume change step, the distances between pairs of particles belonging to(More)
The short-range attraction and long-range repulsion between nanoparticles or macromolecules can lead to spontaneous pattern formation on solid surfaces, fluid interfaces, or membranes. In order to study the self-assembly in such systems we consider a triangular lattice model with nearest-neighbor attraction and third-neighbor repulsion. At the ground state(More)
Template-assisted pattern formation in monolayers of particles with competing short-range attraction and long-range repulsion interactions (SALR) is studied by Monte Carlo simulations in a simple generic model [N. G. Almarza et al., J. Chem. Phys., 2014, 140, 164708]. We focus on densities corresponding to formation of parallel stripes of particles and on(More)
Molecular dynamics simulations and integral equation calculations of a simple equimolar mixture of diatomic molecules and monomers interacting via attractive and repulsive short-range potentials show the existence of pattern formation (microheterogeneity), mostly due to depletion forces away from the demixing region. Effective site-site potentials extracted(More)
  • 1