Nizar Lajnef

Learn More
— Measurement of cumulative loading statistics experienced by a structure is essential for monitoring long-term fatigue in biomechanical implants. However, the total power that can be harvested using typical in-vivo strain levels is less than 1µW. In this paper we characterize the performance of a silicon floating-gate injector array that can be used in(More)
Measurement of the cumulative loading statistics experienced by an implant is essential for prediction of long-term fatigue failure. However, the total power that can be harvested using typical in-vivo strain levels is less than 1 muW. In this paper, we present a novel method for long-term, battery-less fatigue monitoring by integrating piezoelectric(More)
—Self-powered monitoring refers to a signal processing technique where the computational power is harvested directly from the signal being monitored. In this paper, we present the design and calibration of a CMOS event counter for long-term, self-powered mechanical usage monitoring. The counter exploits a log-linear response of the hot-electron injection(More)
OBJECTIVE Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the(More)
— Many signals of interest in structural engineering, for example seismic activity, lie in the infrasonic range (frequency less than 20 Hz). This poses a significant challenge for developing batteryless sensors that are required not only to monitor rare infrasonic events but also to harvest the energy for sensing, computation and storage from the signal(More)
  • 1