Nizami Vagidov

Learn More
Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron(More)
Band-structure effects on channel carrier density in the ultrathin-body end of the ITRS roadmap silicon (100) n-type metal oxide semiconductor field effect transistors (MOSFETs) are assessed here using a semi-empirical nearest-neighbor sp 3 d 5 s à tight-binding model with spin-orbit interaction. The calculations focus on the body thickness range between 10(More)
Energy dispersion relations for holes inn silicon quantum wells and quantum wires" (2007). Abstract We calculate the energy dispersion relations in Si quantum wells (QW), E(k 2D), and quantum wires (QWR), E(k 1D), focusing on the regions with negative effective mass (NEM) in the valence band. The existence of such NEM regions is a necessary condition for(More)
We analyze the effect of doping on photoelectron kinetics in quantum dot [QD] structures and find two strong effects of the built-in-dot charge. First, the built-in-dot charge enhances the infrared [IR] transitions in QD structures. This effect significantly increases electron coupling to IR radiation and improves harvesting of the IR power in QD solar(More)
Results of our many-particle Monte-Carlo modeling of ki-netics and transport of electrons in InAs/GaAs quantum-dot infrared photodetectors are reviewed. We studied the dependence of the electron capture time on the electric field at different heights of the potential barriers around the dots. The capture time is almost independent on the electric field up(More)
  • 1