Nitzan Livneh

  • Citations Per Year
Learn More
We demonstrate a directional beaming of photons emitted from nanocrystal quantum dots that are embedded in a subwavelength metallic nanoslit array with a divergence angle of less than 4°. We show that the eigenmodes of the structure result in localized electromagnetic field enhancements at the Bragg cavity resonances, which could be controlled and(More)
We design a circular plasmonic lens for collimation of light emission from nanocrystal quantum dots at room temperature in the near IR spectral range. We implement a two-dimensional k-space imaging technique to obtain the full spectral-angular response of the surface plasmon resonance modes of the bare plasmonic lens. This method is also used to map the(More)
One of the most important challenges in modern quantum optical applications is the demonstration of efficient, scalable, on-chip single photon sources, which can operate at room temperature. In this paper we demonstrate a room-temperature single photon source based on a single colloidal nanocrystal quantum dot positioned inside a circular bulls-eye shaped(More)
We present an intuitive reasoning and derivation leading to an approximated, simple closed-form model for predicting and explaining the general emergence of enhanced transmission resonances through rectangular, optically thick metallic gratings in various configurations and polarizations. This model is based on an effective index approximation and it(More)
  • 1