Learn More
We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from(More)
A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide-nanotube complexes form a virtual "chaperone sensor," which(More)
The first structure-reactivity relationship for electron-transfer reactions of single walled carbon nanotubes (SWNTs) has been derived and experimentally validated using 4-hydroxybenzene diazonium as a model electron acceptor. The model describes steady-state reaction data using an adsorption-controlled scheme, and electron transfer theories are used to(More)
Nanostructured energetic materials are attracting attention for their faster reaction rates compared to materials with micron-scale particles. We numerically solve the coupled energy balances for a carbon nanotube with an annular coating of reactive metal, such that coupling to thermal transport in the nanotube accelerates reaction in the annulus. For the(More)
Theoretical calculations predict that by coupling an exothermic chemical reaction with a nanotube or nanowire possessing a high axial thermal conductivity, a self-propagating reactive wave can be driven along its length. Herein, such waves are realized using a 7-nm cyclotrimethylene trinitramine annular shell around a multiwalled carbon nanotube and are(More)
A hydrodynamic model is used to describe the motion of surfactant-suspended single-walled carbon nanotubes in a density gradient, while being subjected to a centrifugal field. The number of surfactant molecules adsorbed on each nanotube determines its effective density and, hence, its position in the gradient after centrifugation has been completed.(More)
Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained(More)
Deconvolution of the absorption spectrum of single-walled carbon nanotubes (SWNTs) into distinct (n,m) contributions is complicated because transition energies are closely spaced. The algorithm presented in this work attempts to simplify the problem by grouping nanotubes with similar transition energies and assigning weights to their spectral contributions.(More)
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus(More)
Functionalizing nanoparticles with organic ligands, such as oligomers, polymers, DNA, and proteins, is an attractive way to manipulate the interfacial interactions between the nanoparticles and the medium the particles are placed in, and thus control the nanoparticle assembly. In this paper we have conducted a Monte Carlo simulation study on copolymer(More)