Learn More
Lipopeptide biosurfactants (LPBSs) consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors(More)
Biosurfactant production by Pichia anomala PY1, a thermotorelant strain isolated from fermented food, was examined as grown in media containing various carbon and nitrogen sources. The optimal conditions for biosurfactant production included 4% soybean oil as carbon source at pH 5.5 at 30 degrees C for 7 d. Under these conditions, the surface tension of the(More)
The glyceraldehyde-3-phosphate dehydrogenase (GAP) gene from the thermotolerant yeast strain Pichia thermomethanolica BCC16875 was characterized. To investigate the efficiency of the GAP promoter for heterologous expression, especially at high temperature in various carbon sources, the promoter was employed for constitutive expression of a phytase reporter(More)
Fluorescent Pseudomonas sp. MIS38 produces a cyclic lipopeptide, arthrofactin. Arthrofactin is synthesized by a unique nonribosomal peptide synthetase (NRPS) with dual C/E-domains. In this study, another class of cyclic peptide, pyoverdine, was isolated from MIS38, viz., Pvd38. The main fraction of Pvd38 had an m/z value of 1,064.57 and contained Ala, Glu,(More)
Methanol-utilizing metabolism is generally found in methylotrophic yeasts. Several potential promoters regulating enzymes in this pathway have been extensively studied, especially alcohol oxidase. Here, we characterized the alcohol oxidase gene promoter from thermotolerant Ogataea thermomethanolica (OthAOX). This promoter can be induced by methanol, and was(More)
In recent years, cytokine-mediated therapy has emerged as further advance alternative in cancer therapy. Interleukin-18 (IL-18) has exhibited interesting anti-cancer properties especially when combined with IL-12. We engineered IL-18 in order to improve its activity using single point mutagenesis. IL-18 mutants were constructed according to binding residues(More)
  • 1