Learn More
Until very recently, microprocessor designs were computation-centric. On-chip communication was frequently ignored. This was because of fast, single-cycle on-chip communication. The interconnect power was also insignificant compared to the transistor power. With uniprocessor designs providing diminishing returns and the advent of chip multiprocessors (CMPs)(More)
Originally developed to connect processors and memories in multicomputers, prior research and design of interconnection networks have focused largely on performance. As these networks get deployed in a wide range of new applications, where power is becoming a key design constraint, we need to seriously consider power efficiency in designing interconnection(More)
Due to wire delay scalability and bandwidth limitations inherent in shared buses and dedicated links, packet-switched on-chip interconnection networks are fast emerging as the pervasive communication fabric to connect different processing elements in many-core chips. However, current state-of-the-art packet-switched networks rely on complex routers which(More)
Reversible logic finds many applications, especially in the area of quantum computing. A completely specified n-input, n-output Boolean function is called reversible if it maps each input assignment to a unique output assignment and vice versa. Logic synthesis for reversible functions differs substantially from traditional logic synthesis and is currently(More)
Security is becoming an everyday concern for a wide range of electronic systems that manipulate, communicate, and store sensitive data. An important and emerging category of such electronic systems are battery-powered mobile appliances, such as personal digital assistants (PDAs) and cell phones, which are severely constrained in the resources they possess,(More)
In this paper, we present a hardware-software cosynthesis system, called MOGAC, that partitions and schedules embedded system specifications consisting of multiple periodic task graphs. MOGAC synthesizes real-time heterogeneous distributed architectures using an adaptive multiobjective genetic algorithm that can escape local minima. Price and power(More)
In this paper, we present a power-conscious algorithm for jointly scheduling multi-rate periodic task graphs and aperiodic tasks in distributed real-time embedded systems. While the periodic task graphs have hard deadlines, the aperiodic tasks can have either hard or soft deadlines. Periodic task graphs are first scheduled statically. Slots are created in(More)
We propose an algorithm for efficient threshold network synthesis of arbitrary multioutput Boolean functions. Many nanotechnologies, such as resonant tunneling diodes, quantum cellular automata, and single electron tunneling, are capable of implementing threshold logic efficiently. The main purpose of this work is to bridge the current wide gap between(More)