Learn More
We tested the possibility of using tree cores to detect unknown subsurface contamination by chlorinated volatile organic compounds (Cl-VOCs) and petroleum hydrocarbons, a method we term "phytoscreening". The scope and limitations of the method include the following: (i) a number of widespread Cl-VOC contaminants are readily found in tree cores, although(More)
Transcripts for two genes expressed early in alfalfa nodule development (MsENOD40 and MsENOD2) are found in mycorrhizal roots, but not in noncolonized roots or in roots infected with the fungal pathogen Rhizoctonia solani. These same two early nodulin genes are expressed in uninoculated roots upon application of the cytokinin 6-benzylaminopurine. Correlated(More)
Greenhouse-cultured, container-grown seedlings of Aleppo pine (Pinus halepensis Mill.), radiata pine (Pinus radiata D. Don), and interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) were cold acclimated and deacclimated in growth chambers over 24 weeks. Needle and root cold hardiness and root growth potential (RGP) were measured weekly.(More)
We aimed to elucidate environmental and silvicultural factors that determine the extent of fire-free natural regeneration in east Mediterranean Pinus halepensis forests. The specific aims were to study the potential and identify bottlenecks for natural regeneration and examine the effects of overstory thinning and site preparation treatments. We integrated(More)
The efficient use of trees for taking up volatile organic compounds (VOCs) from the subsurface for remedial and screening purposes is hampered because many poorly quantified co-occurring processes affect VOC concentrations in the tree, the most basic of which are VOC sorption and uptake by roots. Toward understanding the dominant sorption mechanisms, uptake(More)
  • 1