Learn More
This study was aimed at obtaining insight into the diversity of sialic acids in cancer- and non-cancer-related CA125 antigen, tumour marker of serous ovarian cancer. Starting from available data suggesting the possible relevance of sialic acids for discriminating CA125 antigens of different origin, we have employed a new experimental approach based on the(More)
Cancer antigen 125 (CA125), also referred to as mucin 16, is expressed under both normal and pathological conditions and the complexity of its structure indicates multifunctionality, i.e. both the protein and carbohydrate parts may be involved in diverse interactions at different levels of cell and tissue organization. Its biological role is not understood,(More)
Mucin 16 (MUC16) is a type I transmembrane protein, the extracellular portion of which is shed after proteolytic degradation and is denoted as CA125 antigen, a well known tumor marker for ovarian cancer. Regarding its polypeptide and glycan structures, as yet there is no detailed insight into their heterogeneity and ligand properties, which may greatly(More)
CA-125 (coelomic epithelium-related antigen) forms the extracellular portion of transmembrane mucin 16 (MUC16). It is shed after proteolytic degradation. Due to structural heterogeneity, CA-125 ligand capacity and biological roles are not yet understood. In this study, we assessed CA-125 as a ligand for dendritic cell-specific ICAM-3-grabbing non-integrin(More)
Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential(More)
This study was aimed at evaluation of the contribution of acid-soluble glycoproteins (ASG)/mucins and extracellular vesicles (EVs), yet unexplored components of human seminal plasma (hSP) to the complexity of its glycome. Gaining insight into the native presentation and distribution of glycans across hSP could help establish molecular environments(More)
  • 1