Learn More
Research in cellular mechanotransduction often focuses on how extracellular physical forces are converted into chemical signals at the cell surface. However, mechanical forces that are exerted on surface-adhesion receptors, such as integrins and cadherins, are also channelled along cytoskeletal filaments and concentrated at distant sites in the cytoplasm(More)
The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth(More)
It is widely postulated that mechanotransduction is initiated at the local force-membrane interface by inducing local conformational changes of proteins, similar to soluble ligand-induced signal transduction. However, all published reports are limited in time scale to address this fundamental issue. Using a FRET-based cytosolic Src reporter in a living(More)
The distribution and behaviour of larval and juvenile perch (Perca fluviatilis L.) were studied for two years in large, deep Lake Constance. After hatching larvae were transported by water currents to the open water. The majority of larvae remained in the pelagic zone for about one month. In both years, their return to the littoral zone coincided with the(More)
Cell surface receptors integrate chemical and mechanical cues to regulate a wide range of biological processes. Integrin complexes are the mechanotransducers between the extracellular matrix and the actomyosin cytoskeleton. By analogy, cadherin complexes may function as mechanosensors at cell-cell junctions, but this capacity of cadherins has not been(More)
Maintaining undifferentiated mouse embryonic stem cell (mESC) culture has been a major challenge as mESCs cultured in Leukemia Inhibitory Factor (LIF) conditions exhibit spontaneous differentiation, fluctuating expression of pluripotency genes, and genes of specialized cells. Here we show that, in sharp contrast to the mESCs seeded on the conventional rigid(More)
This study investigated the biodegradation potential of 3-(14)C,1H,1H,2H,2H-perfluorodecanol [CF3(CF2)6(14)CF2CH2CH2OH, 14C-labeled 8-2 telomer B alcohol or 14C-labeled 8-2 TBA] by diluted activated sludge from a domestic wastewater treatment plant under aerobic conditions. After sample extraction with acetonitrile, biotransformation products were separated(More)
Mechanical properties of the cells are important in controlling cell shape, cell migration, and other functions. To understand how cytoskeletal (CSK) filaments interact with one another mechanically, mechanical properties of adherent endothelial cells were analyzed after treatment with CSK-disrupting drugs. CSK stiffness (the ratio of applied stress to(More)
OBJECTIVE The objective of this study was to address the role of heterosexual transmission of HIV in China. GOAL The goal of this study was to explore the prevalence of unsafe sex and the likelihood of HIV spread heterosexually from core populations to others. STUDY The authors conducted a review of behavioral studies. RESULTS Drug users were more(More)
Tyrosinase has been extensively utilized as a model substrate to study the maturation of glycoproteins in the mammalian secretory pathway. The visual nature of its enzymatic activity (melanin production) has facilitated the identification and characterization of the proteins that assist it becoming a functional enzyme, localized to its proper cellular(More)