Learn More
We have developed a portable library for automated detection of melanoma termed SkinScan© that can be used on smartphones and other handheld devices. Compared to desktop computers, embedded processors have limited processing speed, memory, and power, but they have the advantage of portability and low cost. In this study we explored the feasibility of(More)
In this paper we implement the 7-point checklist, a set of dermoscopic criteria widely used by clinicians for melanoma detection, on smart handheld devices, such as the Apple iPhone and iPad. The application developed is using sophisticated image processing and pattern recognition algorithms, yet it is light enough to run on a handheld device with limited(More)
Among the most critical components of a computerized system for automated melanoma detection is image sampling and pooling of the extracted features. In this paper, we propose a new method for sampling and pooling based on a combination of spatial pooling and graph theory features. The performance of the new method is evaluated using a dataset of more than(More)
In this paper, we apply a Bag-of-Features approach to malignant melanoma detection based on epiluminescence microscopy imaging. Each skin lesion is represented by a histogram of codewords or clusters identified from a training data set. Classification results using Naive Bayes classification and Support Vector Machines are reported. The best performance(More)
In typical classification problems, high level concept features provided by a domain expert are usually available during classifier training but not during its deployment. We address this problem from a multitask learning (MTL) perspective by treating these features as auxiliary learning tasks. Previous efforts in MTL have mostly assumed that all tasks have(More)
In this study, we analyze brain connectivity based on Granger causality computed from magnetoencephalographic (MEG) activity obtained at the resting state in eight autistic and eight normal subjects along with measures of network connectivity derived from graph theory in an attempt to understand how communication in a human brain network is affected by(More)
Smartphones of the latest generation featuring advanced multicore processors, dedicated microchips for graphics, high-resolution cameras, and innovative operating systems provide a portable platform for running sophisticated medical screening software and delivering point-of-care patient diagnostic services at a very low cost. In this chapter, we present a(More)
In this study we explored the use of coherence and Granger causality (GC) to separate patients in minimally conscious state (MCS) from patients with severe neurocognitive disorders (SND) that show signs of awareness. We studied 16 patients, 7 MCS and 9 SND with age between 18 and 49 years. Three minutes of ongoing electroencephalographic (EEG) activity was(More)
Skin cancer has been the most common and represents 50% of all new cancers detected each year. If detected at an early stage, simple and economic treatment can cure it mostly. Accurate skin lesion segmentation is critical in automated early skin cancer detection and diagnosis systems. In this paper, we propose an Evolution Strategies (ES) based segmentation(More)