Learn More
Natively unfolded phenylalanine-glycine (FG)-repeat domains are alleged to form the physical constituents of the selective barrier-gate in nuclear pore complexes during nucleocytoplasmic transport. Presently, the biophysical mechanism behind the selective gate remains speculative because of a lack of information regarding the nanomechanical properties of(More)
Liver tissue engineering requires a perfect extracellular matrix (ECM) for primary hepatocytes culture to maintain high level of liver-specific functions and desirable mechanical stability. The aim of this study was to develop a novel natural nanofibrous scaffold with surface-galactose ligands to enhance the bioactivity and mechanical stability of primary(More)
Phenylalanine-glycine (FG)-repeat nucleoporins (Nups) form the major components of the selective gating mechanism in the nuclear pore complex (NPC). Hence, a primary requirement is to understand how they vacillate between preventing the access of passively diffusing molecules and promoting the translocation of receptor-bound cargo into the NPC. To shed(More)
Cells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this article, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient(More)
Nanofibrous scaffolds have been applied widely in tissue engineering to simulate the nanostructure of natural extracellular matrix (ECM) and promote cell bioactivity. The aim of this study was to design a biocompatible nanofibrous scaffold for blood outgrowth endothelial cells (BOECs) and investigate the interaction between the topography of the nanofibrous(More)
Among a variety of polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a microbial polyester, with biodegradable, nonantigenic, and biocompatible properties, is attracting more and more attention in tissue engineering. Hydroxyapatite (HA), similar to the mineral component of natural bone, is known to be osteoconductive, nontoxic, and(More)
To study the ultrastructure of nuclear pore complexes (NPCs), a wide spectrum of different electron microscopy (EM) or atomic force microscopy (AFM) techniques can be employed. The combination of these methods can reveal new insights into the structural and functional organization of this important supramolecular machine through which nucleocytoplasmic(More)
Three-dimensional (3D) cell culture models are gaining increasing interest for use in drug development pipelines due to their closer resemblance to human tissues. Hydrogels are the first-choice class of materials to recreate in vitro the 3D extra-cellular matrix (ECM) environment, important in studying cell-ECM interactions and 3D cellular organization and(More)
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, has been a good candidate of biomaterial employed in tissue engineering. However, the PHBV film is hydrophobic and has no recognition sites for cell attachment. In this study, PHBV films are activated by ammonia plasma treatment to produce amino groups on the surface, followed(More)
Aligned and randomly oriented chitosan nanofibers were prepared by electrospinning. The fibers were modified with the RGD cell-adhesive peptide through a heterobifunctional crosslinker containing a segment of poly(ethylene glycol) (PEG). PEG rendered the surface hydrophilic and provided flexible spacers, allowing the preservation of the bioactivity of(More)