Ning-Ning Wei

Learn More
In this study, we aimed to develop a new ligand-based virtual screening approach using an effective shape-overlapping procedure and a more robust scoring function (denoted by the HWZ score for convenience). The HWZ score-based virtual screening approach was tested against the compounds for 40 protein targets available in the Database of Useful Decoys (DUD;(More)
Coumarin and its derivatives are fragrant natural compounds isolated from the genus Murraya that are flowering plants widely distributed in East Asia, Australia, and the Pacific Islands. Murraya plants have been widely used as medicinal herbs for relief of pain, such as headache, rheumatic pain, toothache, and snake bites. However, little is known about(More)
Combined factor deficiency (F5F8D) is a rare autosomal recessive disorder caused by mutations in the LMAN1 or MCFD2 genes. It has been proposed that this pathogenic process occurs via a multi-step pathway involving metal loss, EF-hand-Ca21 dissociation and assembly of misfolded MCFD2-LMAN1 complex. Here, we have investigated the solution conformations of(More)
Density functional theory (DFT) was carried out to identify the existence of intermolecular dihydrogen bonds of the 2-pyridone (2PY)-diethylmethylsilane (DEMS) and 2PY-triethylgermanium (TEGH) clusters in the ground state. The H···H distances of both clusters are shorter than the sum of their van der Waals radii. Thus, intermolecular dihydrogen bonds(More)
An intermolecular coexistent hydrogen bond and a dihydrogen bond of a novel phenol-H(2)O-diethylmethylsilane (DEMS) complex in the electronically excited states were studied using the time-dependent density functional theory (TDDFT) method. Frontier molecular orbitals analysis revealed that the S(2) state of the dihydrogen-bonded phenol-H(2)O-DEMS complex(More)
Intermolecular dihydrogen bond O-H···H-Ge in the electronically excited state of the dihydrogen-bonded phenol-triethylgermanium (TEGH) complex was studied theoretically using time-dependent density functional theory. Analysis of the frontier molecular orbitals revealed a locally excited S(1) state in which only the phenol moiety is electronically excited.(More)
The chemokine receptor 5 (CCR5) belongs to the superfamily of serpentine G protein-coupled receptors (GPCRs). The DRY motif (Asp, Arg, Tyr) of the intracellular loop 2 (ICL2), which is highly conserved in the GPCRs has been shown to be essential for the stability of folding of CCR5 and the interaction with β-arrestin. But the molecular mechanism by which it(More)
We report the identification of a novel CC chemokine receptor 5 (CCR5) variant that seems associated with resistance to HIV-1 infection. The V130I mutation of the CCR5 receptor is located in the intracellular loop ICL2 known as DRY box and described in the literature as a nonsynonymous mutation present in nonhuman primates group. Extensive molecular(More)
Topoisomerase I (Topo1) has been identified as an attractive target for anticancer drug development due to its central role in facilitating the nuclear process of the DNA. It is essential for rational design of novel Topo1 inhibitors to reliably predict the binding structures of the Topo1 inhibitors interacting with the Topo1-DNA complex. The detailed(More)
We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the(More)