Learn More
Arabidopsis seedlings display contrasting developmental patterns depending on the ambient light. Seedlings grown in the light develop photomorphogenically, characterized by short hypocotyls and expanded green cotyledons. In contrast, seedlings grown in darkness become etiolated, with elongated hypocotyls and dosed cotyledons on an apical hook. Light(More)
The cyclin-dependent kinase Cdk2 associates with cyclins A, D, and E and has been implicated in the control of the G1 to S phase transition in mammals. To identify potential Cdk2 regulators, we have employed an improved two-hybrid system to isolate human genes encoding Cdk-interacting proteins (Cips). CIP1 encodes a novel 21 kd protein that is found in(More)
Arabidopsis COP1 acts as a light-inactivable repressor of photomorphogenic development, but its molecular mode of action remains unclear. Here, we show that COP1 negatively regulates HY5, a bZIP protein and a positive regulator of photomorphogenic development. Both in vitro and in vivo assays indicate that COP1 interacts directly and specifically with HY5.(More)
SCF ubiquitin ligases control various processes by marking regulatory proteins for ubiquitin-dependent proteolysis. To illuminate how SCF complexes are regulated, we sought proteins that interact with the human SCF component CUL1. The COP9 signalosome (CSN), a suppressor of plant photomorphogenesis, associated with multiple cullins and promoted cleavage of(More)
The pleiotropic CONSTITUTIVE PHOTOMORPHOGENIC (COP), DEETIOLATED (DET), and FUSCA (FUS) loci are essential regulatory genes involved in the light control of seedling developmental patterns in Arabidopsis. Although COP1, DET1, COP9, and FUS6 (also called COP11) have been cloned, their biochemical activities and interactions remain elusive. We have recently(More)
Environmental light signals are sensed by multiple families of photoreceptors and transduced by largely unknown mechanisms to regulate plant development. In this report, genetic analysis suggested that light signals perceived by both phytochromes and a blue light receptor converge to repress the action of Arabidopsis COP9 in suppressing seedling(More)
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected(More)
The COP9 signalosome (CSN) is composed of eight distinct subunits and is highly homologous to the lid sub-complex of the 26S proteasome. CSN was initially defined as a repressor of photomorphogenesis in Arabidopsis, and it has now been found to participate in diverse cellular and developmental processes in various eukaryotic organisms. Recently, CSN was(More)
The Arabidopsis HY5 gene has been defined genetically as a positive regulator of photomorphogenesis and recently has been shown to encode a basic leucine zipper type of transcription factor. Here, we report that HY5 is constitutively nuclear localized and is involved in light regulation of transcriptional activity of the promoters containing the G-box, a(More)
We have studied the roles of PhyA, PhyB and CRY1 photoreceptors and the downstream light-signaling components, COP1 and DET1, in mediating high-irradiance light-controlled activity of promoters containing synthetic light-responsive elements (LRE). Promoters with paired LREs were able to respond to a wide spectrum of light through multiple photoreceptors,(More)