Nina Matthes

Learn More
During liver tissue repair, hepatic stellate cells (HSC), a pericyte-like mesenchymal liver cell population, transform from a "quiescent" status ("resting" HSC) into myofibroblast-like cells ("activated" HSC) with the latter representing the principle matrix synthesizing cell of the liver. Presently, the mechanisms that terminate HSC cell proliferation when(More)
Transforming growth factor beta (TGF-beta) as well as tumor necrosis factor alpha (TNF-alpha) gene expression are up-regulated in chronically inflamed liver. These cytokines were investigated for their influence on apoptosis and proliferation of activated hepatic stellate cells (HSCs). Spontaneous apoptosis in activated HSC was significantly down-regulated(More)
Activated hepatic stellate cells (HSC) are thought to play a pivotal role in development of liver fibrosis which takes place in chronic liver diseases. Previous studies have shown that "activated" rat HSC undergo spontaneous apoptosis probably through the CD95/CD95L pathway. TGF-beta as well as TNF-alpha reduced spontaneous apoptosis and CD95L expression.(More)
Hepatic stellate cells (HSC), particularly activated HSC, are thought to be the principle matrix-producing cell of the diseased liver. However, other cell types of the fibroblast lineage, especially the rat liver myofibroblasts (rMF), also have fibrogenic potential. A major difference between the two cell types is the different life span under culture(More)
  • 1