Learn More
Although the existence of tight junction (TJ) structures (or a secondary epidermal barrier) was postulated for a long time, the first description of TJ proteins in the epidermis (occludin, ZO-1, and ZO-2) was only fairly recent. Since then, a wealth of new insights concerning TJs and TJ proteins, including their functional role in the skin, have been(More)
Upon barrier disturbance, adult CD44 knockout (KO) mice show delayed recovery of epidermal barrier function. This correlates with the loss of apical polarization of lamellar body (LB) secretion. As tight junctions (TJs) are crucial for barrier function and regulate polarized targeting of vesicles, we hypothesized that CD44 regulates TJs and associated cell(More)
Tight junctions (TJs) form a selective barrier for ions, water, and macromolecules in simple epithelia. In keratinocytes and epidermis, TJs were shown to be involved in individual barrier functions. The absence of the TJ protein claudin-1 (Cldn1) in mice results in a skin-barrier defect characterized by lethal water loss. However, detailed molecular(More)
Skin barrier function is indispensable to prevent the uncontrolled loss of water and solutes and to protect the body from external assaults. To fulfil this function, keratinocytes undergo a complex pathway of differentiation that terminates in the formation of the stratum corneum. Additionally, tight junctions (TJs), which are cell-cell junctions localized(More)
A variety of tight junction (TJ) proteins including claudins, occludin, tricellulin, zonula occludens-proteins and junctional adhesion molecules have been identified in complex localization patterns in mammalian epidermis. Their expression and/or localization is frequently altered in skin diseases including skin tumors. However, our understanding of the(More)
Tight junction (TJ) proteins are involved in a number of cellular functions, including paracellular barrier formation, cell polarization, differentiation, and proliferation. Altered expression of TJ proteins was reported in various epithelial tumors. Here, we used tissue samples of human cutaneous squamous cell carcinoma (SCC), its precursor tumors, as well(More)
Tight junctions (TJ) are cell-cell junctions that have proved to form a paracellular barrier for solutes and water between cells of epithelia, including the stratum granulosum of the stratified epithelium of the epidermis of newborn mice. In mice lacking claudin-1, a major barrier-forming TJ component, this barrier was abolished. However, the role of TJ in(More)
Psoriasis is an inflammatory skin disease characterized by hyperproliferation of keratinocytes, impaired barrier function, and pronounced infiltration of inflammatory cells. Tight junctions (TJs) are cell-cell junctions that form paracellular barriers for solutes and inflammatory cells. Altered localization of TJ proteins in the epidermis was described in(More)
Tight Junction (TJ) proteins have been shown to exert a barrier function within the skin. Here, we study the fate of TJ proteins during the challenge of the skin by bacterial colonization and infection. We investigated the influence of various exfoliative toxin-negative Staphylococcus strains on TJ, adherens junction (AJ), desmosomal proteins, and actin in(More)
Five X-chromosome DNA markers were typed on 261 members of three large kindreds with Alport syndrome (hereditary glomerulonephritis). Lod scores greater than 3.0 for linkage between the disease locus and two of the markers confirmed X-linked inheritance of the disease. A decreasing gradient in the estimated recombination fractions observed when the markers(More)