Learn More
Stable isotope ratios, especially of carbon (δ 13C) and nitrogen (δ 15N), are often used to make predictions of an animal’s diet. Next to the isotope ratios of the studied animal and its diet, two factors are important for the interpretation of stable isotope data: the discrimination factor and the turnover rate. Both parameters are species- and(More)
The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of(More)
Bats face high energetic requirements, as powered flight is costly and they have a disadvantageous surface-to-volume-ratio. To deal with those requirements energy saving mechanisms, such as heterothermy (torpor), have evolved. Torpor during pregnancy, however, reduces rates of foetal development and consequently prolongs pregnancy. Therefore, heterothermy(More)
European bat species are strictly protected by law, and the Member States of the European Union are obliged to record species condition and to contribute to their conservation. Habitat-suitability models are an essential aid in assessing the conservation status and distribution of a species. However, model performance depends on the data quality. This study(More)
Resource partitioning is an essential mechanism enabling species coexistence. The resources that are used by an animal are linked to its morphology and ecology. Therefore, similar species should use similar resources. The ecological niche of an individual summarizes all used resources and is therefore composed of several dimensions. Many methods are(More)
Mammals can be aligned along a slow-fast life-history continuum and a low–high metabolic rate continuum based on their traits. Small non-volant mammals occupy the fast/high end in both continua with high reproductive rates and short life spans linked with high mass-specific metabolic rates. Bats occupy the high end of the metabolic continuum, but the slow(More)
Many forest-dwelling bats spend their diurnal inactivity period in tree cavities. During this time bats can save energy through heterothermy. A heterothermic response (torpor) is characterized by a lowered body temperature, reduced metabolic rate, and reduction of other physiological processes, and can be influenced by the microclimatic conditions of roost(More)
Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species(More)
  • 1