Nina B. Liabakk

Learn More
Numerous proteins, many essential for the DNA replication machinery, interact with proliferating cell nuclear antigen (PCNA) through the PCNA-interacting peptide (PIP) sequence called the PIP box. We have previously shown that the oxidative demethylase human AlkB homologue 2 (hABH2) colocalizes with PCNA in replication foci. In this study, we show that(More)
Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2.(More)
The generation of high-affinity antibodies requires somatic hypermutation (SHM) and class switch recombination (CSR) at the immunoglobulin (Ig) locus. Both processes are triggered by activation-induced cytidine deaminase (AID) and require UNG-encoded uracil-DNA glycosylase. AID has been suggested to function as an mRNA editing deaminase or as a(More)
Proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication, DNA repair, cell cycle regulation, chromatin remodeling, and epigenetics. Many proteins interact with PCNA through the PCNA interacting peptide (PIP)-box or the newly identified AlkB homolog 2 PCNA interacting motif (APIM). The xeroderma pigmentosum group A (XPA) protein,(More)
We investigated the in vivo effects of one bolus injection (400 mg/kg) of intravenous immunoglobulin (IVIG) on a number of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist (IL-1Ra) in plasma in 12 patients with primary hypogammaglobulinemia. A significant and rapid increase in plasma levels of IL-6, IL-8, and tumor necrosis(More)
Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA(More)
Multiple myeloma is an incurable cancer with expansion of malignant plasma cells in the bone marrow. Previous studies have shown that monocytes and macrophages in the bone marrow milieu are important for tumor growth and may play a role in the drug response. We therefore characterized monocytes in bone marrow aspirates by flow cytometry. We found that there(More)
  • 1