Learn More
During the last decade microsatellites or SSRs (simple sequence repeats) have been proven to be the markers of choice in plant genetics research and for breeding purposes because of their hypervariability and ease of detection. However, development of these markers is expensive, labour intensive and time consuming, in particular, if they are being developed(More)
Barley (Hordeum vulgare L.) is among the world's earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical(More)
Genomewide association studies depend on the extent of linkage disequilibrium (LD), the number and distribution of markers, and the underlying structure in populations under study. Outbreeding species generally exhibit limited LD, and consequently, a very large number of markers are required for effective whole-genome association genetic scans. In contrast,(More)
High density genetic maps of plants have, nearly without exception, made use of marker datasets containing missing or questionable genotype calls derived from a variety of genic and non-genic or anonymous markers, and been presented as a single linear order of genetic loci for each linkage group. The consequences of missing or erroneous data include falsely(More)
In plant species with large genomes such as wheat or barley, genome organization at the level of DNA sequence is largely unknown. The largest sequences that are publicly accessible so far from Triticeae genomes are two 60 kb and 66 kb intervals from barley. Here, we report on the analysis of a 211 kb contiguous DNA sequence from diploid wheat (Triticum(More)
More than 50 leaf rust resistance (Lr) genes against the fungal pathogen Puccinia triticina have been identified in the wheat gene pool, and a large number of them have been extensively used in breeding. Of the 50 Lr genes, all are known only from their phenotype and/or map position except for Lr21, which was cloned recently. For many years, the problems of(More)
We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate(More)
Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes. Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de novo production of a genetically anchored linear(More)
An integrated barley transcript map (consensus map) comprising 1,032 expressed sequence tag (EST)-based markers (total 1,055 loci: 607 RFLP, 190 SSR, and 258 SNP), and 200 anchor markers from previously published data, has been generated by mapping in three doubled haploid (DH) populations. Between 107 and 179 EST-based markers were allocated to the seven(More)
MOTIVATION Genomic DNA was hybridized to oligonucleotide microarrays to identify single-feature polymorphisms (SFP) for Arabidopsis, which has a genome size of approximately 130 Mb. However, that method does not work well for organisms such as barley, with a much larger 5200 Mb genome. In the present study, we demonstrate SFP detection using a small number(More)