Niloy Bhadra

Learn More
A reversible electrical block of the pudendal nerves may provide a valuable method for restoration of urinary voiding in individuals with bladder-sphincter dyssynergia. This study quantified the stimulus parameters and effectiveness of high frequency (HFAC) sinusoidal waveforms on the pudendal nerves to produce block of the external urethral sphincter(More)
Neuroprostheses that electrically stimulate paralyzed muscles provide functional enhancements for individuals with spinal cord injury and stroke such as standing and stepping, reaching and grasping, and bladder and bowel function. For chronic applications, implanted neuroprostheses lead to reliable, low-maintenance and patient-acceptable systems. The(More)
High frequency alternating current (HFAC) sinusoidal waveforms can block conduction in mammalian peripheral nerves. A mammalian axon model was used to simulate the response of nerves to HFAC conduction block. Sinusoidal waveforms from 1  to 40 kHz were delivered to eight simulated axon diameters ranging from 7.3  to 16 μm. Conduction block was obtained(More)
A quick-acting, quick-reversing method for blocking action potentials in peripheral nerves could be used in the treatment of muscle spasticity and pain. A high-frequency alternating-current (HFAC) sinusoidal waveform is one possible means for providing this type of block. HFAC was used to block peripheral motor nerve activity in an in vivo mammalian model.(More)
High frequency alternating current (HFAC) sinusoidal waveforms can block conduction in mammalian peripheral nerves. A nerve simulation software package was used to simulate HFAC conduction block in a mammalian axon model. Eight axon diameters from 7.3 microm to 16 microm were tested using sinusoidal waveforms between 1 kHz to 40 kHz. Block was obtained(More)
Conduction block of peripheral nerves is an important technique for many basic and applied neurophysiology studies. To date, there has not been a technique which provides a quickly initiated and reversible "on-demand" conduction block which is both sustainable for long periods of time and does not generate activity in the nerve at the onset of the(More)
An advanced neuroprosthesis that provides control of grasp-release, forearm pronation, and elbow extension to persons with cervical level spinal cord injury is described. The neuroprosthesis includes implanted and external components. The implanted components are a 10-channel stimulator-telemeter, leads and electrodes, and a joint angle transducer; the(More)
Electrical currents can be used to produce a block of action potential conduction in whole nerves. This block has a rapid onset and reversal. The mechanism of electrical nerve conduction block has not been conclusively determined, and inconsistencies appear in the literature regarding whether the block is produced by membrane hyperpolarization,(More)
A standardized surgical procedure to implant an eight-channel functional neuromuscular stimulation system in the lower extremities for standing, exercise, and transfers for individuals with spinal cord injury has been developed. The implanted components include: (1) one eight-channel receiver-stimulator, (2) epimysial electrodes, (3) intramuscular(More)
Many diseases are characterized by undesired or pathological neural activity. The local delivery of high-frequency currents has been shown to be an effective method for blocking neural conduction in peripheral nerves and may provide a therapy for these conditions. To date, all studies of high-frequency conduction block have utilized extraneural (cuff)(More)