Nilay Hazari

Learn More
One of the most challenging problems in small molecule activation is the development of a homogeneous catalyst for converting dinitrogen into ammonia at ambient temperatures and atmospheric pressure. A catalytic cycle based on molybdenum that converts dinitrogen into ammonia has been reported. However, a well defined iron based system for the conversion of(More)
InI3 is able to catalyze the conversion of methanol to a mixture of hydrocarbons at 200 degrees C with one highly branched alkane, 2,2,3-trimethylbutane (triptane), being obtained in high selectivity. The mechanism for InI3-catalyzed reactions appears to be basically the same as that proposed for the previously studied ZnI2-catalyzed system in which(More)
InI3 catalyzes the reaction of branched alkanes with methanol to produce heavier and more highly branched alkanes, which are more valuable fuels. The reaction of 2,3-dimethylbutane with methanol in the presence of InI3 at 180-200 degrees C affords the maximally branched C7 alkane, 2,2,3-trimethylbutane (triptane). With the addition of catalytic amounts of(More)
The yield of triptane from the reaction of methanol with zinc iodide is dramatically increased by addition of phosphorous or hypophosphorous acid, via transfer of hydride from a P-H bond to carbocationic intermediates.
There is considerable interest in both catalysts for CO(2) conversion and understanding how CO(2) reacts with transition metal complexes. Here we develop a simple model for predicting the thermodynamic favorability of CO(2) insertion into Ir(III) hydrides. In general this reaction is unfavorable; however, we demonstrate that with a hydrogen bond donor in(More)
The Pd(II) dimers [(2-phenylpyridine)Pd(mu-X)](2) and [(2-p-tolylpyridine)Pd(mu-X)](2) (X = OAc or TFA) do not exhibit the expected planar geometry (of approximate D(2h) symmetry) but instead resemble an open "clamshell" in which the acetate ligands are perpendicular to the plane containing the Pd atoms and 2-arylpyridine ligands, with the Pd atoms brought(More)
A new homogeneous iridium catalyst gives hydrogenation of quinolines under unprecedentedly mild conditions-as low as 1 atm of H(2) and 25 °C. We report air- and moisture-stable iridium(I) NHC catalyst precursors that are active for reduction of a wide variety of quinolines having functionalities at the 2-, 6-, and 8- positions. A combined experimental and(More)
Formic acid (FA) is an attractive compound for H2 storage. Currently, the most active catalysts for FA dehydrogenation use precious metals. Here, we report a homogeneous iron catalyst that, when used with a Lewis acid (LA) co-catalyst, gives approximately 1,000,000 turnovers for FA dehydrogenation. To date, this is the highest turnover number reported for a(More)
The demand for specific fuels and chemical feed-stocks fluctuates, and as a result, logistical mismatches can occur in the supply of their precursor raw materials such as coal, biomass, crude oil, and methane. To overcome these challenges, industry requires a versatile and robust suite of conversion technologies, many of which are mediated by synthesis gas(More)