Nikolay Yankov

Learn More
All binary [<i>n</i>,<i>n</i>/2] optimal self-dual codes for length 52 &#x2264; <i>n</i> &#x2264; 60 with an automorphism of order 7 or 13 are classified up to equivalence. Two of the constructed [54,27,10] codes have weight enumerators that were not previously known to exist. There are also some [58,29,10] codes with new values of the parameters in their(More)
Using a method for constructing self-dual codes having an automorphism of odd prime order, we classify up to equivalence all binary self-dual codes with an automorphism of order 11 with 6 cycles and minimum distance 12. This classification gives new [72, 36, 12] codes with weight enumerator that was previously not obtained as well as many [66, 33, 12], [68,(More)
We describe a method for constructing binary self-dual codes having an automorphism of order p/sup 2/ for an odd prime p. Using this method, we classify the optimal self-dual codes of lengths 36 /spl les/ n /spl les/ 44 and n = 54, having an automorphism of order 9. We obtain all self-dual (56,28,12),(58,29,10), and (60,30,12) codes having an automorphism(More)
In this paper, we study optimal binary self-dual codes with minimum distance 12 having an automorphism of order 17. We prove that all such codes have parameters [68 + f, 34 + f/2, 12], f = 0, 2, 4 and an automorphism of type 17 − (4, f), f = 0, 2, 4 and provide a full classification of these codes. This classification gives new values β = 17, 153, 170, 187,(More)
The purpose of this paper is to complete the classification of binary self-dual [48, 24, 10] codes with an automorphism of odd prime order. We prove that if there is a self-dual [48, 24, 10] code with an automorphism of type p-(c, f) with p being an odd prime, then p = 3, c = 16, f = 0. By considering only an automorphism of type 3-(16, 0), we prove that(More)