Learn More
Approximate results based on samples often provide the only way in which advanced analytical applications on very massive data sets can satisfy their time and resource constraints. Unfortunately, methods and tools for the computation of accurate early results are currently not supported in MapReduce-oriented systems although these are intended for 'big(More)
This paper introduces a generic and scalable framework for automated anomaly detection on large scale time-series data. Early detection of anomalies plays a key role in maintaining consistency of person's data and protects corporations against malicious attackers. Current state of the art anomaly detection approaches suffer from scalability, use-case(More)
Digital signal processing applications often require the computation of linear systems. These computations can be considerably expensive and require optimizations for lower power consumption, higher throughput, and faster response time. Unfortunately, system designers do not have the necessary tools to take advantage of the wide flexibility in ways to(More)
The problem of supporting data mining applications proved to be difficult for database management systems and it is now proving to be very challenging for data stream management systems (DSMSs), where the limitations of SQL are made even more severe by the requirements of continuous queries. The major technical advances that achieved separately on DSMSs and(More)
Asset classes respond differently to shifts in financial markets, thus an investor can minimize the risk of loss and maximize return of his portfolio by diversification of assets. Increasing the number of diversified assets in a financial portfolio significantly improves the optimal allocation of different assets giving better investment opportunities.(More)
Approximate results based on samples often provide the only way in which advanced analytical applications on very massive data sets (a.k.a. `big data') can satisfy their time and resource constraints. Unfortunately, methods and tools for the computation of accurate early results are currently not supported in big data systems (e.g., Hadoop). Therefore, we(More)
It is becoming increasingly common for organizations to collect very large amounts of data over time, and to need to detect unusual or anomalous time series. For example, Yahoo has banks of mail servers that are monitored over time. Many measurements on server performance are collected every hour for each of thousands of servers. We wish to identify servers(More)
Faced with the problem of characterizing systematic changes in multivariate time series in an unsupervised manner, we derive and test two methods of regularizing hidden Markov models for this task. Regularization on state transitions provides smooth transitioning among states, such that the sequences are split into broad, contiguous segments. Our methods(More)
Web traffic represents a powerful mirror for various real-world phenomena. For example, it was shown that web search volumes have a positive correlation with stock trading volumes and with the sentiment of investors. Our hypothesis is that user browsing behavior on a domain-specific portal is a better predictor of user intent than web searches.
Matrix decomposition is required in various algorithms used in wireless communication applications. FPGAs strike a balance between ASICs and DSPs, as they have the programmability of software with performance capacity approaching that of a custom hardware implementation. However, FPGA architectures require designers to make a countless number of system,(More)